Synlett 2018; 29(16): 2181-2184
DOI: 10.1055/s-0037-1610630
letter
© Georg Thieme Verlag Stuttgart · New York

Cobalt Vanadium Oxide Supported on Reduced Graphene Oxide for the Oxidation of Styrene Derivatives to Aldehydes with Hydrogen Peroxide as Oxidant

Hui Zou
,
Chuanfeng Hu
,
Kaihao Chen
,
Guansheng Xiao
,
Xinhua Peng*
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 20 June 2018

Accepted after revision: 06 August 2018

Publication Date:
30 August 2018 (online)


Abstract

Cobalt vanadium oxide supported on reduced graphene oxide showed excellent performance in the oxidation of styrene derivatives to the corresponding aldehydes with hydrogen peroxide as oxidant. An electron-donating group at the para-position of the aromatic ring facilitates the formation of the corresponding aldehyde. Compared with conventional methods, the newly designed heterogeneous catalytic system offers a promising prospect because of its economic applicability and environmental friendliness.

Supporting Information

 
  • References and Notes

    • 1a Feng B. Hou Z. Wang X. Hu Y. Li H. Qiao Y. Green Chem. 2009; 11: 1446
    • 1b Pathan S. Patel A. Ind. Eng. Chem. Res. 2013; 52: 11913
    • 1c Mi C. Meng X.-G. Liao X.-H. Peng X. RSC Adv. 2015; 5: 69487
    • 2a Yadav GD. Mistry CK. J. Mol. Catal. A: Chem. 1995; 102: 67
    • 2b Yadav GD. Haldavanekar BV. J. Phys. Chem. A 1997; 101: 36
    • 2c Guo C.-C. Liu Q. Wang X.-T. Hu H.-Y. Appl. Catal., A 2005; 282: 55
  • 3 McGrath DV. Grubbs RH. Ziller JW. J. Am. Chem. Soc. 1991; 113: 3611
    • 4a Yogish K. Sastri NV. S. Ind. Eng. Chem. Res. 1988; 27: 909
    • 4b Duarte TA. G. Santos IC. M. S. Simões MM. Q. Neves MG. P. M. S. Cavaleiro AM. V. Cavaleiro JA. S. Catal. Lett. 2013; 144: 104
    • 4c Patel A. Patel K. Inorg. Chim. Acta 2014; 419: 130
    • 4d Duarte TA. G. Estrada AC. Simões MM. Q. Santos IC. M. S. Cavaleiro AM. V. Neves MG. P. M. S. Cavaleiro JA. S. Catal. Sci. Technol. 2015; 5: 351
    • 5a Campelo JM. Conesa TD. Gracia MJ. Jurado MJ. Luque R. Marinas JM. Romero AA. Green Chem. 2008; 10: 853
    • 5b Tanglumlert W. Imae T. White TJ. Wongkasemjit S. Catal. Commun. 2009; 10: 1070
    • 5c Yang Y. Zhang Y. Hao S. Guan J. Ding H. Shang F. Qiu P. Kan Q. Appl. Catal., A 2010; 381: 274
    • 5d Neto A. deB. S. Pinheiro LG. Filho JM. Oliveira AC. Fuel 2015; 150: 305
    • 5e Pârvulescu V. Tablet C. Anastasescu C. Su BL. Catal. Today 2004; 93: 307
    • 5f Valand J. Parekh H. Friedrich HB. Catal. Commun. 2013; 40: 149
    • 6a Sharma P. Patel A. J. Mol. Catal. A: Chem. 2009; 299: 37
    • 6b Tong J. Li W. Bo L. Wang H. Hu Y. Zhang Z. Mahboob A. J. Catal. 2016; 344: 474
    • 6c Gao D. Gao Q. Catal. Commun. 2007; 8: 681
    • 6d Liu J. Wang F. Gu Z. Xu X. Chem. Eng. J. (Amsterdam, Neth.) 2009; 151: 319
    • 7a Geim AK. Novoselov KS. Nat. Mater. 2007; 6: 183
    • 7b Stoller MD. Park S. Zhu Y. An J. Ruoff RS. Nano Lett. 2008; 8: 3498
  • 8 Hummers WS. Jr. Offeman RE. J. Am. Chem. Soc. 1958; 80: 1339
  • 9 Sun H. Liu S. Zhou G. Ang HM. Tadé MO. Wang S. ACS Appl. Mater. Interfaces 2012; 4: 5466
    • 10a Fang Z. Ito A. Stuart AC. Luo H. Chen Z. Vinodgopal K. You W. Meyer TJ. Taylor DK. ACS Nano 2013; 7: 7992
    • 10b Liu S. Peng W. Sun H. Wang S. Nanoscale 2014; 6: 766
    • 11a Ping Y. Yan J.-M. Wang Z.-L. Wang H.-L. Jiang Q. J. Mater. Chem. A 2013; 1: 12188
    • 11b Hsu K.-C. Chen D.-H. Nanoscale Res. Lett. 2014; 9: 484
    • 11c Ania CO. Seredych M. Rodriguez-Castellon E. Bandosz TJ. Appl. Catal., B 2015; 163: 424
  • 12 Wang T. Li C. Ji J. Wei Y. Zhang P. Wang S. Fan X. Gong J. ACS Sustainable Chem. Eng. 2014; 2: 2253
  • 13 Neumann R. Abu-Gnim C. J. Am. Chem. Soc. 1990; 112: 6025
    • 14a Hulea V. Dumitriu E. Appl. Catal., A 2004; 277: 99
    • 14b Anand N. Reddy KH. P. Rao KS. R. Burri DR. Catal. Lett. 2011; 141: 1355
    • 14c Desai NC. Chudasama JA. Karkar TJ. Patel BY. Jadeja KA. Godhani DR. Mehta JP. J. Mol. Catal. A: Chem. 2016; 424: 203
    • 14d Sun W. Hu J. React. Kinet., Mech. Catal. 2016; 119: 305
  • 15 Typical Procedure The oxidation of styrene derivatives was carried out in a 50 mL two-necked round-bottomed flask. Substrate (1 mmol) was stirred with the CoV catalyst (0.02 g) in MeCN (5.0 mL). 30 wt% H2O2 (0.34 g) was added slowly to the mixture, the temperature was increased to 65 °C, and the mixture was stirred for 6 h. The catalyst was separated by centrifugation and the product was extracted with EtOAc and sat. aq NaCl. The organic phase was dried (Na2SO4) and purified by column chromatography.Benzaldehyde (Table 2, entry 16): Colorless liquid; to give a colorless liquid; yield: 91 mg (91%). 1H NMR (500 MHz, CDCl3); δ = 10.08 (s, 1 H), 7.98–7.91 (m, 2 H), 7.69 (t, J = 7.4 Hz, 1 H), 7.59 (t, J = 7.6 Hz, 2 H). 13C NMR (126 MHz, CDCl3); δ = 191.87, 135.96, 133.98, 129.24, 128.53.