Synthesis 2018; 50(19): 3891-3896
DOI: 10.1055/s-0037-1610441
paper
© Georg Thieme Verlag Stuttgart · New York

Catalytic Pauson–Khand Reaction in Ethylene Glycol–Toluene: Activity­, Selectivity, and Catalyst Recycling

a   Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain   Email: antoni.riera@irbbarcelona.org   Email: xavier.verdaguer@irbbarcelona.org
b   Departament de Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
,
a   Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain   Email: antoni.riera@irbbarcelona.org   Email: xavier.verdaguer@irbbarcelona.org
b   Departament de Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
,
a   Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain   Email: antoni.riera@irbbarcelona.org   Email: xavier.verdaguer@irbbarcelona.org
b   Departament de Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
› Author Affiliations
We gratefully acknowledge institutional funding from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, CTQ2017-87840-P) and IRB Barcelona trough the CERCA Programme of the Catalan Government. IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from MINECO (Government of Spain).
Further Information

Publication History

Received: 19 April 2018

Accepted after revision: 30 May 2018

Publication Date:
05 July 2018 (online)


Abstract

The use of ethylene glycol (15% v/v in toluene) as additive in the catalytic Pauson–Khand reaction (PKR) is reported. In most cases both the yield and selectivity were enhanced compared to standard protocols. Moreover, the immiscibility of ethylene glycol in toluene allowed recycling of the catalyst (which remained mainly in the ethylene glycol). The recycling allowed catalyst loading to be reduced to only 3 mol%. A gram-scale reaction was also performed, allowing the use of only 1 mol% of Co2(CO)8, the lowest amount reported so far in intermolecular cobalt-catalyzed PKR.

 
  • References

  • 1 The Pauson–Khand Reaction: Scope, Variations and Applications. Rios R. Wiley; Chichester: 2012

    • Selected reviews:
    • 2a Ricker JD. Geary LM. Top. Catal. 2017; 60: 609
    • 2b Evans P. Appl. Organomet. Chem. 2013; 27: 261
    • 2c Strübing D. Beller M. In Catalytic Carbonylation Reactions . Beller M. Springer; Heidelberg: 2006: 165
    • 2d Omae I. Appl. Organomet. Chem. 2007; 21: 318
    • 2e Pérez-Castells J. In Metal Catalyzed Cascade Reactions . Müller TJ. J. Springer; Heidelberg: 2006: 207
    • 2f Laschat S. Becheanu A. Bell T. Baro A. Synlett 2005; 2547
    • 2g Blanco-Urgoiti J. Añorbe L. Pérez-Serrano L. Domínguez G. Pérez-Castells J. Chem. Soc. Rev. 2004; 33: 32
    • 2h Rodríguez Rivero M. Adrio J. Carretero JC. Eur. J. Org. Chem. 2002; 2881
    • 2i Brummond KM. Kent JL. Tetrahedron 2000; 56: 3263

      Selected synthetic applications of the intramolecular PKR:
    • 3a Zhao N. Yin S. Xie S. Yan H. Ren P. Chen G. Chen F. Xu J. Angew. Chem. Int. Ed. 2018; 57: 3386
    • 3b Chuang KV. Xu C. Reisman SE. Science (Washington, D. C.) 2016; 353: 912
    • 3c Verdaguer X. Science (Washington, D. C.) 2016; 353: 866
    • 3d Fujioka K. Yokoe H. Inoue A. Soga K. Tsubuki M. Shishido K. J. Org. Chem. 2014; 79: 7512
    • 3e Crawford JJ. Kerr WJ. McLaughlin M. Morrison AJ. Pauson PL. Thurston GJ. Tetrahedron 2006; 62: 11360
    • 3f Castro J. Moyano A. Pericàs MA. Riera A. Greene AE. Alvarez-Larena A. Piniella JF. J. Org. Chem. 1996; 61: 9016

      Selected applications of the intermolecular PKR:
    • 4a Su S. Rodriguez RA. Baran PS. J. Am. Chem. Soc. 2011; 133: 13922
    • 4b Aiguabella N. Pesquer A. Verdaguer X. Riera A. Org. Lett. 2013; 15: 2696
    • 4c Vázquez-Romero A. Cárdenas L. Blasi E. Verdaguer X. Riera A. Org. Lett. 2009; 11: 3104
    • 4d Vazquez-Romero A. Rodriguez J. Lledo A. Verdaguer X. Riera A. Org. Lett. 2008; 10: 4509
    • 4e Gibson SE. Mainolfi N. Angew. Chem. Int. Ed. 2005; 44: 3022
    • 4f Bernardes V. Kann N. Riera A. Moyano A. Pericàs MA. Greene AE. J. Org. Chem. 1995; 60: 6670
    • 5a Hicks FA. Buchwald SL. J. Am. Chem. Soc. 1996; 118: 11688
    • 5b Sturla SJ. Buchwald SL. J. Org. Chem. 1999; 64: 5547
    • 6a Kondo T. Suzuki N. Okada T. Mitsudo T.-A. J. Am. Chem. Soc. 1997; 119: 6187
    • 6b Morimoto T. Chatani N. Fukumoto Y. Murai S. J. Org. Chem. 1997; 62: 3762
    • 7a Kwong FY. Lee HW. Qiu L. Lam WH. Li Y.-M. Kwong HL. Chan AS. C. Adv. Synth. Catal. 2005; 347: 1750
    • 7b Jeong N. Sung BK. Choi YK. J. Am. Chem. Soc. 2000; 122: 6771
    • 7c Cristóbal-Lecina E. Constantino AR. Grabulosa A. Riera A. Verdaguer X. Organometallics 2015; 34: 4989
  • 8 Zhang M. Buchwald SL. J. Org. Chem. 1996; 61: 4498
  • 9 Shibata T. Takagi K. J. Am. Chem. Soc. 2000; 122: 9852

    • For heterogeneous bimetallic catalysts Co/M (M = Rh, Ru) see:
    • 10a Park KH. Chung YK. Adv. Synth. Catal. 2005; 347: 854
    • 10b Park KH. Son SU. Chung YK. Chem. Commun. 2003; 1898
  • 11 Wang Y. Xu L. Yu R. Chen J. Yang Z. Chem. Commun. 2012; 48: 8183
    • 12a Cabot R. Lledo A. Reves M. Riera A. Verdaguer X. Organometallics 2007; 26: 1134
    • 12b Gibson SE. Stevenazzi A. Angew. Chem. Int. Ed. 2003; 42: 1800
    • 13a Tang Y. Deng L. Zhang Y. Dong G. Chen J. Yang Z. Org. Lett. 2005; 7: 593
    • 13b Tang Y. Deng L. Zhang Y. Dong G. Chen J. Yang Z. Org. Lett. 2005; 7: 1657
  • 14 Jeong N. Hwang SH. Lee Y. Chung YK. J. Am. Chem. Soc. 1994; 116: 3159
  • 15 Gibson SE. Johnstone C. Stevenazzi A. Tetrahedron 2002; 58: 4937
  • 16 Sugihara T. Yamaguchi M. Nishizawa M. Chem. Eur. J. 2001; 7: 1589
  • 17 Hayashi M. Hashimoto Y. Yamamoto Y. Usuki J. Saigo K. Angew. Chem. Int. Ed. 2000; 39: 631
    • 18a For poly(ethylene glycol)-stabilized Co nanoparticles, see: Muller J.-L. Klankermayer J. Leitner W. Chem. Commun. 2007; 1939
    • 18b Kim S.-W. Son SU. Lee SS. Hyeon T. Chung YK. Chem. Commun. 2001; 2212
    • 18c Son SU. Lee SI. Chung YK. Kim S.-W. Hyeon T. Org. Lett. 2002; 4: 277
  • 19 Son SU. Park KH. Chung YK. Org. Lett. 2002; 4: 3983
  • 20 Muller J.-L. Rickers A. Leitner W. Adv. Synth. Catal. 2007; 349: 287
    • 21a Chung YK. Heterogeneous Catalytic Pauson–Khand Reaction. In The Pauson–Khand Reaction: Scope, Variations and Applications. Rios R. Wiley; Chichester: 2012. Chap. 9, 23
    • 21b Kim S.-W. Son SU. Lee SI. Hyeon T. Chung YK. J. Am. Chem. Soc. 2000; 122: 1550
  • 22 Cabré A. Verdaguer X. Riera A. Synthesis 2017; 49: 3945
  • 23 Kwong FY. Li YM. Lam WH. Qiu L. Chan KS. Chan AS. C. Chem. Eur. J. 2005; 11: 3872
  • 24 Lee HW. Chan AS. C. Kwong FK. Chem. Commun. 2007; 2633
  • 25 Garçon M. Cabré A. Verdaguer X. Riera A. Organometallics 2017; 36: 1056
  • 26 Fager-Jokela E. Kaasalainen E. Leppänen K. Tois J. Helaja J. Tetrahedron 2008; 64: 10381