Synthesis 2018; 50(22): 4359-4368
DOI: 10.1055/s-0037-1610437
paper
© Georg Thieme Verlag Stuttgart · New York

Short Enantioselective Formal Synthesis of (–)-Platencin

Christian Defieber
a  The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
,
a  The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
b  Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA   Email: stoltz@caltech.edu
,
Gennadii A. Grabovyi
b  Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA   Email: stoltz@caltech.edu
,
Brian M. Stoltz*
a  The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology, 1200 E California Blvd. MC 101-20, Pasadena, CA 91125, USA
› Author Affiliations
We thank the NIH-NIGMS (R01 GM080269), DAAD (postdoctoral fellowship to C.D.), Eli Lilly (predoctoral fellowship to J.T.M.), Amgen, Bristol-Myers Squibb, Merck Research Laboratories, Abbott Laboratories, Boehringer-Ingelheim, and Caltech for generous funding. We also thank the UIC Department of Chemistry (startup funds to J.T.M.) and the National Science Foundation (CAREER Award 1654490 to J.T.M.).
Further Information

Publication History

Received: 03 May 2018

Accepted after revision: 29 May 2018

Publication Date:
23 July 2018 (eFirst)

Dedicated to Prof. Dr. Scott E. Denmark on the occasion of his 65th birthday.

Abstract

A short enantioselective formal synthesis of the antibiotic natural product platencin is reported. Key steps in the synthesis include enantioselective decarboxylation alkylation, aldehyde/olefin radical cyclization, and regioselective aldol cyclization.

Supporting Information

 
  • References

  • 1 Currently at BASF Global Strategic Marketing Crop Protection, Limburgerhof, Rheinland-Pfalz, Germany.
  • 2 Currently at Department of Chemistry, University of Illinois at Chicago, USA.
  • 3 von Nussbaum F. Brands M. Hinzen B. Weigand S. Häbich D. Angew. Chem. Int. Ed. 2006; 45: 5072
    • 4a Jayasuriya H. Herath KB. Zhang C. Zink DL. Basilio A. Genilloud O. Diez MT. Vicente F. Gonzalez I. Salazar O. Pelaez F. Cummings R. Ha S. Wang J. Sing SB. Angew. Chem. Int. Ed. 2007; 46: 4684
    • 4b Wang J. Kodali S. Lee SH. Galgoci A. Painter R. Dorso K. Racine F. Motyl M. Hernandez L. Tinney E. Colletti SL. Herath K. Cummings R. Salazar O. Gonzalez I. Basilio A. Vicente F. Genilloud O. Pelaez F. Jayasuriya H. Young K. Cully DF. Singh SB. Proc. Nat. Acad. Sci. USA 2007; 104: 7612
    • 5a Wang J. Soisson SM. Young K. Shoop W. Kodali S. Galgoci A. Painter R. Parthasarathy G. Tang YS. Cummings R. Ha S. Dorso K. Motyl M. Jayasuriya H. Ondeyka JG. Herath KB. Zhang CW. Hernandez L. Allocco J. Basilio A. Tormo JR. Genilloud O. Vicente F. Pelaez F. Colwell L. Lee SH. Michael B. Felcetto T. Gill C. Silver LL. Hermes JD. Bartizal K. Barrett J. Schmatz D. Becker JW. Cully D. Singh SB. Nature 2006; 441: 358
    • 5b Singh SB. Jayasuriya H. Ondeyka JG. Herath KB. Zhang CW. Zink DL. Tsou NN. Ball RG. Basilio A. Genilloud O. Diez MT. Vicente F. Pelaez F. Young K. Wang J. J. Am. Chem. Soc. 2006; 128: 11916
    • 5c Singh SB. Herath KB. Wang J. Tsou NN. Ball RG. Tetrahedron Lett. 2007; 48: 5429
    • 5d Herath KB. Attygalle AB. Singh SB. J. Am. Chem. Soc. 2007; 129: 15422

      For syntheses of platencin, see:
    • 6a Nicolaou KC. Tria GS. Edmonds DJ. Angew. Chem. Int. Ed. 2008; 47: 1780
    • 6b Hayashida J. Rawal VH. Angew. Chem. Int. Ed. 2008; 47: 4373
    • 6c Tiefenbacher K. Mulzer J. Angew. Chem. Int. Ed. 2008; 47: 6199
    • 6d Jun SY. Zheng J.-C. Lee D. Angew. Chem. Int. Ed. 2008; 47: 6201
    • 6e Waalboer DC. J. Schaapman MC. van Delft FL. Rutjes FP. J. T. Angew. Chem. Int. Ed. 2008; 47: 6576
    • 6f Nicolaou KC. Toh Q.-Y. Chen DY.-K. J. Am. Chem. Soc. 2008; 130: 11292
    • 6g Tiefenbacher K. Mulzer J. J. Org. Chem. 2009; 74: 2937
    • 6h Varseev GN. Maier ME. Angew. Chem. Int. Ed. 2009; 48: 3685
    • 6i Nicolaou KC. Tria GS. Edmonds DJ. Kar M. J. Am. Chem. Soc. 2009; 131: 15909
    • 6j Ghosh AK. Xi K. Angew. Chem. Int. Ed. 2009; 48: 5372
    • 6k Hirai S. Nakada M. Tetrahedron Lett. 2010; 51: 5076
    • 6l Hirai S. Nakada M. Tetrahedron 2011; 67: 518
    • 6m Li P. Yamamoto H. Chem. Commun. 2010; 6294
    • 6n Singh V. Sahu BC. Bansal V. Mobin SM. Org. Biomol. Chem. 2010; 8: 4472
    • 6o Palanichamy K. Subrahmanyam AV. Kaliappan KP. Org. Biomol. Chem. 2011; 9: 7877
    • 6p Leung GY. C. Li H. Toh Q.-Y. Ng AM.-Y. Sum RJ. Bandow JE. Chen DY.-K. Eur. J. Org. Chem. 2011; 183
    • 6q Yoshimitsu T. Nojima S. Hashimoto M. Tanaka T. Org. Lett. 2011; 13: 3698
    • 6r Moustafa GA. I. Saku Y. Aoyama H. Yoshimitsu T. Chem. Commun. 2014; 15706
    • 6s Yadav JS. Goreti R. Pabbaraja S. Sridhar B. Org. Lett. 2013; 15: 3782
    • 6t Zhu L. Zhou C. Yang W. He S. Cheng G.-J. Zhang X. Lee C.-S. J. Org. Chem. 2013; 78: 7912
    • 6u Chang EL. Schwartz BD. Draffan AG. Banwell MG. Willis AC. Chem. Asian J. 2015; 10: 427

      For syntheses of platensimycin, see:
    • 7a For a review on the various syntheses of platensimycin, see: Tiefenbacher K. Mulzer J. Angew. Chem. Int. Ed. 2008; 47: 2548
    • 7b Nicolaou KC. Li A. Edmonds DJ. Tria GS. Ellery SP. J. Am. Chem. Soc. 2009; 131: 16905
    • 7c Yun SY. Zheng J.-C. Lee D. J. Am. Chem. Soc. 2009; 131: 8413
    • 7d Nicolaou KC. Li A. Ellery SP. Edmonds DJ. Angew. Chem. Int. Ed. 2009; 48: 6293
    • 7e McGrath NA. Bartlett ES. Sittihan SS. Njardarson JT. Angew. Chem. Int. Ed. 2009; 48: 8543
    • 7f Palanichamy K. Kaliappan KP. Chem. Asian J. 2010; 5: 668
    • 7g Beaulieu M.-A. Sabot C. Achache N. Guérard KC. Canesi S. Chem. Eur. J. 2010; 16: 11224
    • 7h Tiefenbacher K. Tröndlin L. Mulzer J. Pfaltz A. Tetrahedron 2010; 66: 6508
    • 7i Oblak EZ. Wright DL. Org. Lett. 2011; 13: 2263
    • 7j Horii S. Torihata M. Nagasawa T. Kuwahara S. J. Org. Chem. 2013; 78: 2798
    • 7k Zhu Z. Han Y. Du G. Lee C.-S. Org. Lett. 2013; 15: 524
    • 7l Eey ST.-C. Lear M. Chem. Eur. J. 2014; 20: 11556
    • 7m Jiao Z.-W. Tu Y.-Q. Zhang Q. Liu W.-X. Wang S.-H. Wang M. Org. Chem. Front. 2015; 2: 913
    • 8a Behenna DC. Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
    • 8b Mohr JT. Behenna DC. Harned AM. Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
    • 8c Behenna DC. Mohr JT. Sherden NH. Marinescu SC. Harned AM. Tani K. Seto M. Ma S. Novák Z. Krout MR. McFadden RM. Roizen JL. Enquist JrJ. A. White DE. Levine SR. Petrova KV. Iwashita A. Virgil SC. Stoltz BM. Chem. Eur. J. 2011; 17: 14199
    • 8d Behenna DC. Liu Y. Yurino T. Kim J. White DE. Virgil SC. Stoltz BM. Nature Chem. 2012; 4: 130
    • 8e Bennett NB. Duquette DC. Kim J. Liu W.-B. Marziale AN. Behenna DC. Virgil SC. Stoltz BM. Chem. Eur. J. 2013; 19: 4414
    • 8f Reeves CM. Eidamshaus C. Kim J. Stoltz BM. Angew. Chem. Int. Ed. 2013; 52: 6718
    • 8g Craig RA. II. Loskot SA. Mohr JT. Behenna DC. Harned AM. Stoltz BM. Org. Lett. 2015; 17: 5160
    • 8h Starkov P. Moore JT. Duquette DC. Stoltz BM. Marek I. J. Am. Chem. Soc. 2017; 139: 9615
    • 8i For a review of the development of the enantioselective Tsuji allylation in our labs and others, see: Mohr JT. Stoltz BM. Chem. Asian J. 2008; 2: 1476
  • 9 Mohr JT. Krout MR. Stoltz BM. Nature 2008; 455: 323

    • For recent reviews of allylic alkylation of ketone enolates, see:
    • 10a Braun M. Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952
    • 10b You S.-L. Dai L.-X. Angew. Chem. Int. Ed. 2006; 45: 5246
    • 10c Braun M. Meier T. Synlett 2006; 661
    • 10d Kazmaier U. Curr. Org. Chem. 2003; 7: 317
    • 10e For a recent general review of enantioselective allylic alkylation, see: Lu Z. Ma S. Angew. Chem. Int. Ed. 2008; 47: 258

      For selected applications in total synthesis efforts in our group, see:
    • 11a McFadden RM. Stoltz BM. J. Am. Chem. Soc. 2006; 128: 7738
    • 11b Enquist JA. Stoltz BM. Nature 2008; 453: 1228
    • 11c White DE. Stewart IC. Grubbs RH. Stoltz BM. J. Am. Chem. Soc. 2008; 130: 810
    • 11d Levine SR. Krout MR. Stoltz BM. Org. Lett. 2009; 11: 289
    • 11e Petrova KV. Mohr JT. Stoltz BM. Org. Lett. 2009; 11: 293
    • 11f Numajiri Y. Pritchett BP. Chiyoda K. Stoltz BM. J. Am. Chem. Soc. 2015; 137: 1040
    • 11g Loskot SA. Romney DK. Arnold FH. Stoltz BM. J. Am. Chem. Soc. 2017; 139: 10196
    • 11h Pritchett BP. Donckele EJ. Stoltz BM. Angew. Chem. Int. Ed. 2017; 56: 12624
    • 11i For a review, see: Hong AY. Stoltz BM. Eur. J. Org. Chem. 2013; 14: 2745
    • 12a Stork G. Baine NH. J. Am. Chem. Soc. 1982; 104: 2321
    • 12b Marinovic NN. Ramanthan H. Tetrahedron Lett. 1983; 24: 1871
  • 13 Stork G. Brizzolara A. Landesman H. Szmuszkovicz J. Terrell R. J. Am. Chem. Soc. 1963; 85: 207

    • For accounts of the development of PHOX ligands, see:
    • 14a Helmchen G. Pfaltz A. Acc. Chem. Res. 2000; 33: 336
    • 14b Williams JM. J. Synlett 1996; 705

      We have developed an efficient multi-gram scale synthesis of PHOX ligands, see:
    • 15a Tani K. Behenna DC. McFadden RM. Stoltz BM. Org. Lett. 2007; 9: 2529
    • 15b Krout MR. Mohr JT. Stoltz BM. Org. Synth. 2009; 86: 181
    • 16a Agnello EJ. Laubach GD. J. Org. Chem. 1960; 82: 4293
    • 16b Wijnberg JP. B. A. Vader J. de Groot A. J. Org. Chem. 1983; 48: 4380
    • 16c Guo M. Minuti L. Taticchi A. Wenkert E. J. Org. Chem. 1989; 54: 6138
  • 17 For relevant bond dissociation energies: C(sp2) C–X: C–Cl: 94 kcal/mol, C–Br: 79.6 kcal/mol, C–I: 61.9 kcal/mol. See: Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds . CRC Press; Boca Raton, FL: 2007
    • 18a Piers E. Harrison CL. Zetina-Rocha C. Org. Lett. 2001; 3: 3245
    • 18b Pastor IM. Yus M. Tetrahedron 2001; 57: 2371
  • 19 Stetter H. Kuhlmann H. Chem. Ber. 1976; 109: 2890
    • 20a Hanessian S. Griffin AM. Rozema MJ. Bioorg. Med. Chem. Lett. 1997; 14: 1857
    • 20b Yamada CM. Dellinger DJ. Carruthers MH. J. Am. Chem. Soc. 2006; 128: 5251
    • 21a Mander LN. Sethi SP. Tetrahedron Lett. 1983; 24: 5425
    • 21b Donnely DM. X. Finet J.-P. Rattigan BA. J. Chem. Soc., Perkin Trans. 1 1993; 1729
    • 22a Slomp GJr. Johnson JL. J. Org. Chem. 1958; 80: 915
    • 22b Stanton SA. Felman SW. Parkhurst CS. Godleski SA. J. Am. Chem. Soc. 1983; 105: 1964
  • 23 Kerr MS. Read de Alaniz J. Rovis T. J. Org. Chem. 2005; 70: 5725
  • 24 Other carbene catalysts provide either slower conversion into 20 or no detectable conversion.
    • 25a Yoshikai K. Hayama T. Nishimura K. Yamada K. Tomioka K. J. Org. Chem. 2005; 70: 681
    • 25b For mechanistic investigations of this reaction, see: Yoshikai K. Hayama T. Nishimura K. Yamada K.-i. Tomioka K. Chem. Pharm. Bull. 2005; 53: 586
  • 26 Crystallographic data: CCDC 686706 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 27 Pangborn AB. Giardello MA. Grubbs RH. Rosen RK. Timmers FJ. Organometallics 1996; 15: 1518
  • 28 Schlosser M. Organometallics in Synthesis . Wiley-VCH; New York: 1996
  • 29 Peer M. de Jong JC. Kiefer M. Langer T. Rieck H. Schell H. Sennhenn P. Sprinz J. Steinhagen H. Wiese B. Helmchen G. Tetrahedron 1996; 52: 7547
  • 30 Still WC. Kahn M. Mitra A. J. Org. Chem. 1978; 43: 2923