CC BY ND NC 4.0 · Synlett 2019; 30(04): 361-369
DOI: 10.1055/s-0037-1610410
account
Copyright with the author

Nickel-Catalyzed Highly Atom-Economical C–C Coupling Reactions with π Components

Li-Jun Xiao
a  State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China   Email: mcye@nankai.edu.cn
,
Meng-Chun Ye*
a  State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China   Email: mcye@nankai.edu.cn
,
a  State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China   Email: mcye@nankai.edu.cn
b  Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China   Email: qlzhou@nankai.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Nos. 21421001, 21325207, 21421062, 21532003) and the “111” project (B06005) of the Ministry of Education of China.
Further Information

Publication History

Received: 09 October 2018

Accepted after revision: 15 November 2018

Publication Date:
05 December 2018 (eFirst)

 

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

This account describes our latest advances in the field of nickel(0)-catalyzed hydrofunctionalization of π components. All reactions proceed either through internal hydride transfer or by using an external proton as the hydride source, thereby eliminating the use of stoichiometric amounts of reductants or oxidants. These nickel-catalyzed atom-economical coupling reactions demonstrate that nickel not only is an inexpensive metal catalyst, but also possesses unique and versatile catalytic abilities. Current limitations and the outlook of these reactions are also discussed.

1 Introduction

2 Nickel(0)-Catalyzed Hydroacylation of Styrenes with Simple Aldehydes

3 Nickel(0)-Catalyzed Hydroalkenylation of Imines and Aldehydes with Alkenes

4 Nickel(0)-Catalyzed Hydroarylation of Styrenes and 1,3-Dienes with Organoboronic Derivatives

5 Nickel(0)-Catalyzed Hydroalkylation of 1,3-Dienes with Simple Ketones

6 Summary and Outlook

 
  • References

    • 1a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 1b Ananikov VP. ACS Catal. 2015; 5: 1964
    • 4a Trotuş I.-T, Zimmermann T, Schüth F. Chem. Rev. 2014; 114: 1761
    • 4b Keim W. Angew. Chem., Int. Ed. Engl. 1990; 29: 235
    • 4c See ref 1–3.
    • 5a Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 5b Montgomery J, Sormunen GJ. Top. Curr. Chem. 2007; 279: 1
    • 5c Jackson EP, Malik HA, Sormunen GJ, Baxter RD, Liu P, Wang H, Shareef A.-R, Montgomery J. Acc. Chem. Res. 2015; 48: 1736
    • 6a Ho C.-Y, Schleicher KD, Chan C.-W, Jamison TF. Synlett 2009; 2565
    • 6b Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503

      For reviews see:
    • 7a RajanBabu TV. Chem. Rev. 2003; 103: 2845
    • 7b Hilt G. Eur. J. Org. Chem. 2012; 4441

    • For selected recent developments on other transition-metal-catalyzed C–C couplings of π components, see:
    • 7c Pagar VV, RajanBabu TV. Science 2018; 361: 68
    • 7d Jing SM, Balasanthiran V, Pagar V, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2017; 139: 18034
    • 7e Schmidt VA, Kennedy CR, Bezdek MJ, Chirik PJ. J. Am. Chem. Soc. 2018; 140: 3443
    • 8a He L, Ho C.-Y. Synlett 2014; 25: 2738
    • 8b Ho C.-Y, Chan C.-W, He L. Angew. Chem. Int. Ed. 2015; 54: 4512
    • 8c Lian X, Chen W, Dang L, Li Y, Ho C.-Y. Angew. Chem. Int. Ed. 2017; 56: 9048
    • 8d Chen W, Li Y, Chen Y, Ho C.-Y. Angew. Chem. Int. Ed. 2018; 57: 2677
  • 9 Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
  • 10 Shi W.-J, Zhang Q, Xie J.-H, Zhu S.-F, Hou G.-H, Zhou Q.-L. J. Am. Chem. Soc. 2006; 128: 2780
    • 11a Yang Y, Zhu S.-F, Duan H.-F, Zhou C.-Y, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 2248
    • 11b Zhou C.-Y, Zhu S.-F, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 10955
  • 12 Yang Y, Zhu S.-F, Zhou C.-Y, Zhou Q.-L. J. Am. Chem. Soc. 2008; 130: 14052
    • 13a Trost BM. Science 1991; 254: 1471
    • 13b Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 14a Jun C.-H, Jo E.-A, Park J.-W. Eur. J. Org. Chem. 2007; 1869
    • 14b Willis MC. Chem. Rev. 2010; 110: 725
    • 14c Leung JC, Krische MJ. Chem. Sci. 2012; 3: 2202
  • 15 Murphy SK, Dong VM. Chem. Commun. 2014; 50: 13645
  • 16 Tsuda T, Kiyoi T, Saegusa T. J. Org. Chem. 1990; 55: 2554
    • 17a Ogoshi S, Arai T, Ohashi M, Kurosawa H. Chem. Commun. 2008; 1347
    • 17b Hoshimoto Y, Hayashi Y, Suzuki H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2012; 51: 10812
  • 18 Xiao L.-J, Fu X.-N, Zhou M.-J, Xie J.-H, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2016; 118: 2957
    • 19a Ng S.-S, Jamison TF. J. Am. Chem. Soc. 2005; 127: 14194
    • 19b Ng S.-S, Ho C.-Y, Jamison TF. J. Am. Chem. Soc. 2006; 128: 11513
    • 20a Ogoshi S, Oka M.-a, Kurosawa H. J. Am. Chem. Soc. 2004; 126: 11802
    • 20b Ogoshi S, Ueta M, Arai T, Kurosawa H. J. Am. Chem. Soc. 2005; 127: 12810
    • 21a Whittaker AM, Dong VM. Angew. Chem. Int. Ed. 2015; 54: 1312
    • 21b Gu L.-J, Jin C, Zhang H.-T. Chem. Eur. J. 2015; 21: 8741
    • 22a Hoshimoto Y, Ohashi M, Ogoshi S. Acc. Chem. Res. 2015; 48: 1746
    • 22b See ref 1, 5, 7.
  • 23 See ref 19.
  • 24 Ho C.-Y, Jamison TF. Angew. Chem. Int. Ed. 2007; 46: 782
  • 25 Xiao L.-J, Zhao C.-Y, Cheng L, Feng B.-Y, Feng W.-M, Xie J.-H, Xu X.-F, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 3396
  • 26 Han X.-W, Zhang T, Zheng Y.-L, Yao W.-W, Li J.-F, Pu Y.-G, Ye M.-C, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 5068
    • 27a Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 27b Yang L, Huang H. Chem. Rev. 2015; 115: 3468
    • 27c Crisenza GE. M, Bower JF. Chem. Lett. 2016; 45: 2
    • 27d Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 28a Iwai Y, Gligorich KM, Sigman MS. Angew. Chem. Int. Ed. 2008; 47: 3219
    • 28b Semba K, Ariyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew. Chem. Int. Ed. 2016; 55: 6275
    • 28c He Y, Cai Y, Zhu S. J. Am. Chem. Soc. 2017; 139: 1061
    • 29a Gaydou M, Moragas T, Juliá-Hernández F, Martin R. J. Am. Chem. Soc. 2017; 139: 12161
    • 29b Eberhardt NA, Guan H. Chem. Rev. 2016; 116: 8373
  • 30 Xiao L.-J, Cheng L, Feng W.-M, Li M.-L, Xie J.-H, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 461
  • 31 Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 32a Yu K.-L, Spinazze P, Ostrowski J, Currier SJ, Pack EJ, Hammer L, Roalsvig T, Honeyman JA, Tortolani DR, Reczek PR, Mansuri MM, Starrett JE. J. Med. Chem. 1996; 39: 2411
    • 32b Wisniewska HM, Swift EC, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 9083
    • 33a Hata G, Takahashi K, Miyake A. J. Org. Chem. 1971; 36: 2116
    • 33b Takahashi K, Miyake A, Hata G. Bull. Chem. Soc. Jpn. 1972; 45: 1183
    • 34a Trost BM, Jäkel C, Plietker B. J. Am. Chem. Soc. 2003; 125: 4438
    • 34b Cruz FA, Dong VM. J. Am. Chem. Soc. 2017; 139: 1029
    • 34c Zhou H, Wang Y, Zhang L, Cai M, Luo S. J. Am. Chem. Soc. 2017; 139: 3631
    • 34d Beck TM, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1903
    • 34e Adamson NJ, Wilbur KC. E, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 2761
    • 35a Yang C, Zhang K, Wu Z, Yao H, Lin A. Org. Lett. 2016; 18: 5332
    • 35b Danence Lee JT, Zhao Y. Chem. Eur. J. 2018; 24: 9520
  • 36 Cheng L, Li M.-M, Xiao L.-J, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2018; 140: 11627
    • 37a Jegorov A, Hušák M, Ondŕăcek J, Kratochvíl B, Kuchař M, Bulej P, Gilar M, Tesărová E. J. Fluorine Chem. 1997; 83: 111
    • 37b Trejtnar F, Král R, Pávek P, Wsól V. Chirality 2003; 15: 724