Synthesis 2019; 51(14): 2865-2870
DOI: 10.1055/s-0037-1610322
paper
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Mediated Synthesis of Trifluoromethylthiolated Arenes

Clément Ghiazza
a   Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France   Email: anis.tlili@univ-lyon1.fr
,
Cyrille Monnereau
b   Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 69342, Lyon, France
,
Lhoussain Khrouz
b   Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 69342, Lyon, France
,
a   Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France   Email: anis.tlili@univ-lyon1.fr
c   CERMEP-In vivo Imaging, Groupement Hospitalier Est, 59 Bd Pinel, 69003, Lyon, France
,
a   Institute of Chemistry and Biochemistry (ICBMS–UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France   Email: anis.tlili@univ-lyon1.fr
› Author Affiliations
C.G. held a doctoral fellowship from la region Auvergne Rhône Alpes. The authors are grateful to the CNRS, ICBMS (UMR 5246), and ICL (Institut de Chimie de Lyon) for financial support. The French Fluorine Network as well as the federation RENARD are also acknowledged for their support.
Further Information

Publication History

Received: 26 September 2018

Accepted after revision: 24 October 2018

Publication Date:
20 November 2018 (online)


Published as part of the Bürgenstock Special Section 2018 – Future Stars in Organic Chemistry

Abstract

The visible-light-mediated synthesis of trifluoromethylthiolated arenes in the presence of ruthenium-based photocatayst under mild reaction conditions is reported. The trifluoromethylthiolated arenes are obtained using the shelf-stable reagent trifluoromethyl toluenethiosulfonate at room temperature. The reaction proceeds selectively and does not require the presence of any additive. A mechanism is proposed based on the obtained results of EPR as well as luminescence

Supporting Information

 
  • References

    • 1a Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
    • 1b Toulgoat F, Alazet S, Billard T. Eur. J. Org. Chem. 2014; 2415
    • 1c Zhang K, Xu X, Qing F. Chin. J. Org. Chem. 2015; 35: 556
    • 1d Xiong H.-Y, Pannecoucke X, Besset T. Chem. Eur. J. 2016; 22: 16734
    • 1e Chachignon H, Cahard D. Chin. J. Chem. 2016; 34: 445
    • 1f Barata-Vallejo S, Bonesi S, Postigo A. Org. Biomol. Chem. 2016; 14: 7150
    • 1g Zheng H, Huang Y, Weng Z. Tetrahedron Lett. 2016; 57: 1397
    • 1h Toulgoat F, Billard T. Towards CF3S Group: From Trifluoromethylation of Sulfides to Direct Trifluoromethylthiolation. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science. Groult H, Leroux F, Tressaud A. Elsevier Science; London: 2017: 141
  • 2 Leo A, Hansch C, Elkins D. Chem. Rev. 1971; 71: 525
    • 3a Avdeef A. Absorption and Drug Development: Solubility, Permeability, and Charge State. Wiley; Hoboken: 2012
    • 3b Johnson TW, Gallego RA, Edwards MP. J. Med. Chem. 2018; 61: 6401
    • 4a Wu W, Wang B, Ji X, Cao S. Org. Chem. Front. 2017; 4: 1299
    • 4b Nguyen T, Chiu W, Wang X, Sattler MO, Love JA. Org. Lett. 2016; 18: 5492
    • 4c Zhao M, Zhao X, Zheng P, Tian Y. J. Fluorine Chem. 2017; 194: 73
    • 5a Zhang M, Weng Z. Adv. Synth. Catal. 2016; 358: 386
    • 5b Xu JC. P, Ye J, Liu G. Acta Chim. Sinica 2015; 73: 1294
    • 5c Zhang P, Li M, Xue X.-S, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q. J. Org. Chem. 2016; 81: 7486
    • 5d Shao X, Xu C, Lu L, Shen Q. Acc. Chem. Res. 2015; 48: 1227
    • 5e Billard T. Chim. Oggi/Chem. Today 2016; 34: 18
    • 5f Glenadel Q, Alazet S, Billard T. J. Fluorine Chem. 2015; 179: 89
    • 6a Dong T, He J, Li Z.-H, Zhang C.-P. ACS Sustain. Chem. Eng. 2018; 6: 1327
    • 6b Bertoli G, Exner B, Evers MV, Tschulik K, Gooßen LJ. J. Fluorine Chem. 2018; 210: 132
  • 7 Ghiazza C, Debrauwer V, Monnereau C, Khrouz L, Medebielle M, Billard T, Tlili A. Angew. Chem. Int. Ed. 2018; 57: 11781
    • 8a Bottecchia C, Wei X.-J, Kuijpers KP. L, Hessel V, Noël T. J. Org. Chem. 2016; 81: 7301
    • 8b Straathof NJ. W, Tegelbeckers BJ. P, Hessel V, Wang X, Noël T. Chem. Sci. 2014; 5: 4768
  • 9 Glenadel Q, Alazet S, Baert F, Billard T. Org. Process Res. Dev. 2016; 20: 960
  • 10 Zhao X, Zheng X, Tian M, Tong Y, Yang B, Wei X, Qiu D, Lu K. Org. Chem. Front. 2018; 5: 2636
    • 11a Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 11b Stephenson CR. J, Yoon TP, MacMillan DW. C. Visible Light Photocatalysis in Organic Chemistry . Wiley; Weinheim: 2018
    • 11c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 11d Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 11e Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
  • 12 Keizer J. J. Am. Chem. Soc. 1983; 105: 1494
  • 13 Li X, Yang Z, Bai Y. Int. J. Biol. Macromol. 2018; 107: 144
  • 14 Wei XL, Xiao JB, Wang Y, Bai Y. Spectrochim. Acta, Part A 2010; 75: 299
  • 15 Zhao X, Yang B, Wei A, Sheng J, Tian M, Li Q, Lu K. Tetrahedron Lett. 2018; 59: 1719
  • 16 Alazet S, Billard T. Synlett 2015; 26: 76
  • 17 Matheis C, Wagner V, Goossen LJ. Chem. Eur. J. 2016; 22: 79
  • 18 Yi Y, Long X, Siqi Y, Xiaoqiang L, Yu Z, Vicic DA. Chem. Eur. J. 2016; 22: 858