Synthesis 2019; 51(06): 1466-1472
DOI: 10.1055/s-0037-1610318
paper
© Georg Thieme Verlag Stuttgart · New York

Selective Semi-Hydrogenation of Terminal Alkynes Promoted by Bimetallic Cu-Pd Nanoparticles

Eduardo Buxaderas
a   Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina   Email: gradivoy@criba.edu.ar
,
María Alicia Volpe
b   Planta Piloto de Ingeniería Química, PLAPIQUI (CONICET-UNS), Camino La Carrindanga Km 7, CC 717, 8000 Bahía Blanca, Argentina
,
Gabriel Radivoy*
a   Instituto de Química del Sur (INQUISUR-CONICET), Departamento de Química, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina   Email: gradivoy@criba.edu.ar
› Author Affiliations
This work was generously supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP-2011-268), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Prest. BID, PICT-2014-2171), and Universidad Nacional del Sur (UNS, PGI 24/Q072) from Argentina.
Further Information

Publication History

Received: 18 September 2018

Accepted after revision: 15 October 2018

Publication Date:
21 November 2018 (online)


Abstract

The selective semi-hydrogenation of terminal alkynes was efficiently performed, under mild reaction conditions (H2 balloon, 110 °C), promoted by a bimetallic nanocatalyst composed of copper and palladium nanoparticles (5:1 weight ratio) supported on mesostructured silica (MCM-48). The Cu-PdNPS@MCM-48 catalyst, which demonstrated to be highly chemoselective towards the alkyne functionality, is readily prepared from commercial materials and can be recovered and reused after thermal treatment followed by reduction under H2 atmosphere.

Supporting Information

 
  • References

    • 1a Molnár A, Sárkány A, Varga M. J. Mol. Catal. A: Chem. 2001; 173: 185
    • 1b Sheldon RA, van Bekkum H. Fine Chemicals through Heterogeneous Catalysis . Wiley-VCH; Weinheim: 2000: 351
    • 1c Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. J. Med. Chem. 2006; 49: 3033
    • 1d Baur JA, Sinclair DA. Nat. Rev. Drug Discov. 2006; 5: 493
    • 1e Oger C, Balas L, Durand T, Galano J.-M. Chem. Rev. 2013; 113: 1313
    • 2a Kluwer AM, Elsevier CJ. In Handbook of Homogeneous Hydrogenation . Vol. 1. de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007: 375
    • 2b Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley-Interscience; New York: 2001: 148
    • 2c Fuchs M, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 3978
    • 2d Fiorio JL, López N, Rossi LM. ACS Catal. 2017; 7: 2973
    • 3a Yarulin A, Yuranov I, Cárdenas-Lizana F, Abdulkin P, Kiwi-Minsker L. J. Phys. Chem. C 2013; 117: 13424
    • 3b Hori J, Murata K, Sugai T, Shinohara H, Noyori R, Arai N, Kurono N, Ohkuma T. Adv. Synth. Catal. 2009; 351: 3143
    • 3c Borodziński A, Bond GC. Catal. Rev. 2006; 48: 91
    • 4a Verho O, Zheng H, Gustafson KP. J, Nagendiran A, Zou X, Backvall JE. ChemCatChem 2016; 8: 773
    • 4b Kumara Swamy KC, Siva Reddy A, Sandeep K, Kalyani A. Tetrahedron Lett. 2018; 59: 419
    • 5a Vilé G, Baudouin D, Remediakis IN, Copéret C, López N, Pérez-Ramírez J. ChemCatChem 2013; 5: 3750
    • 5b Alonso F, Yus M. Tetrahedron Lett. 1997; 38: 149
    • 5c Alonso F, Osante I, Yus M. Adv. Synth. Catal. 2006; 348: 305
    • 5d Barrios-Francisco R, Benitez-Paez T, Flores-Alamo M, Arevalo A, Garcia JJ. Chem. Asian J. 2011; 6: 842
  • 6 Delgado JA, Benkirane O, Claver C, Curulla-Ferré D, Godard C. Datlton Trans. 2017; 46: 12381
  • 7 Witte PT, Boland S, Kirby F, van Maanen R, Bleeker BF, de Winter DA. M, Post JA, Geus JW, Berben PH. ChemCatChem 2013; 5: 582
  • 8 Witte P, Berben P, Boland S, Boymans E, Vogt D, Geus J, Donkervoort J. Top. Catal. 2012; 55: 505
  • 9 Astruc D, Lu F, Ruiz-Aranzaes J. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 10a Yarulin A, Yuranov I, Cárdenas-Lizana F, Alexander DT. L, Kiwi-Minsker L. Appl. Catal., A 2014; 478: 186
    • 10b Liu Y, Zhao J, Feng J, He Y, Du Y, Li D. J. Catal. 2018; 359: 251
  • 11 Ferrando R, Jellinek J, Johnston RL. Chem. Rev. 2008; 108: 845
    • 12a McCue AJ, McRitchie CJ, Shepherd AM, Anderson JA. J. Catal. 2014; 319: 127
    • 12b Lee KH, Lee B, Lee KR, Yi MH, Hur NH. Chem. Commun. 2012; 48: 4414
    • 13a Pei GX, Liu XY, Wang A, Lee AF, Isaacs MA, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T. ACS Catal. 2015; 5: 3717
    • 13b He YF, Liu YN, Yang PF, Du YY, Feng JT, Cao XZ, Yang J, Li DQ. J. Catal. 2015; 330: 61
  • 14 Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Angew. Chem. Int. Ed. 2008; 47: 9439
    • 15a Buxaderas E, Graziano-Mayer M, Volpe MA, Radivoy G. Synthesis 2017; 49: 1387
    • 15b Nador F, Volpe MA, Alonso F, Radivoy G. Tetrahedron 2014; 70: 6082 ; and references cited therein
    • 16a Baylet A, Boyer S, Tatibouet J-M, Duprez D. Phys. Chem. Chem. Phys. 2008; 10: 5883
    • 16b Mendez C, Olivero H, Damiani D, Volpe M. Appl. Catal., B 2008; 84: 156
  • 17 Gutierrez V, Alvarez M, Volpe M. Appl. Catal., A 2012; 413-414-358
  • 18 Hendrickson JB, Singer M, Hussoin MS. J. Org. Chem. 1993; 58: 6913
  • 19 Bourne SL, O’Brien M, Kasinathan S, Koos P, Tolstoy P, Dennis X, Hu DX, Bates RW, Martin B, Schenkel B, Ley SV. ChemCatChem 2013; 5: 159
  • 20 Denmark SE, Butler CR. J. Am. Chem. Soc. 2008; 11: 3690
  • 21 Manojveer S, Forrest SJ. K, Johnson MT. Chem. Eur. J. 2018; 24: 803
  • 22 Alacid E, Nájera C. Adv. Synth. Catal. 2006; 348: 2085
  • 23 Mitsudome T, Urayama T, Yamazaki K, Maehara Y, Yamasaki J, Gohara K, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. ACS Catal. 2016; 6: 666
  • 24 Wienhöfer G, Westerhaus FA, Jagadeesh RV, Junge K, Junge H, Beller M. Chem. Commun. 2012; 48: 4827
  • 25 Alacid E, Nájera C. J. Org. Chem. 2008; 73: 2315
  • 26 Zhang L, Li Y, Jinc L.-Y, Liang F. RSC Adv. 2015; 5: 65600
  • 27 Vasilikogiannaki E, Titilas I, Vassilikogiannakis G, Stratakis M. Chem. Commun. 2015; 51: 2384
  • 28 Belger C, Neisius NM, Plietker B. Chem. Eur. J. 2010; 16: 12214