Synlett 2018; 29(19): 2542-2546
DOI: 10.1055/s-0037-1610299
cluster
© Georg Thieme Verlag Stuttgart · New York

Poly(2,3-dihexylthieno[3,4-b]pyrazine-alt-2,3-dihexylquinoxaline): Processible, Low-Bandgap, Ambipolar-Acceptor Frameworks via Direct Arylation Polymerization

Trent E. Anderson
a  Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA   Email: seth.rasmussen@ndsu.edu
,
Evan W. Culver
a  Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA   Email: seth.rasmussen@ndsu.edu
,
Furqan Almyahi
b  Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia
,
Paul C. Dastoor
b  Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia
,
Seth C. Rasmussen*
a  Department of Chemistry and Biochemistry, North Dakota State University, NDSU Dept. 2735, P.O. Box 6050, Fargo, ND 58108, USA   Email: seth.rasmussen@ndsu.edu
› Author Affiliations
Funding provided by North Dakota State University and the American-Australian Fulbright Commission. The work was also performed in part at the Material’s Node of the Australian National Fabrication Facility, which is a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and microfabrication facilities for Australia’s researchers. FA gratefully acknowledges the Office of the Prime Minister of Iraq through the Higher Committee for Education Development (HCED) for funding support.
Further Information

Publication History

Received: 14 July 2018

Accepted after revision: 11 September 2018

Publication Date:
11 October 2018 (online)


Published as part of the Cluster Synthesis of Materials

Abstract

The synthesis of a new dialkyl-functionalized quinoxaline ­acceptor, 5,8-dibromo-2,3-dihexylquinoxaline, is reported, along with its cross-coupling with 2,3-dihexylthieno[3,4-b]pyrazine via direct arylation polymerization. The resulting ambipolar-acceptor polymer ­poly(2,3-dihexylthieno[3,4-b]pyrazine-alt-2,3-dihexylquinoxaline) exhib­its a low bandgap of 1.07 eV and high solubility. The results of initial organic photovoltaic devices are also reported.

Supporting Information

 
  • References and Note0073

  • 1 Handbook of Conducting Polymers . 3rd ed. Skotheim TA, Reynolds JR. CRC Press; Boca Raton, FL: 2007
  • 2 Handbook of Thiophene-based Materials . Perepichka IF, Perepichka DF. John Wiley and Sons; Hoboken, NJ: 2009
  • 3 Rasmussen SC, Ogawa K, Rothstein SD. In Handbook of Organic Electronics and Photonics . Vol. 1. Nalwa HS. American Scientific Publishers; Stevenson Ranch, CA: 2008: 1
  • 4 Rasmussen SC, Schwiderski RL, Mulholland ME. Chem. Commun. 2011; 47: 11394
  • 5 Rasmussen SC. In Encyclopedia of Polymeric Nanomaterials . Muellen K, Kobayashi S. Springer; Heidelberg: 2015: 1155
  • 6 Rasmussen SC. Substantia 2017; 1: 99
  • 7 Rasmussen SC. In Conductive Polymers: Electrical Interactions in Cell Biology and Medicine . Zhang Z, Rouabhia M, Moulton SE. CRC Press; Boca Raton, FL: 2017: 1
  • 8 Rasmussen SC. In 100+ Years of Plastics: Leo Baekeland and Beyond . Strom ET, Rasmussen SC. American Chemical Society; Washington, DC: 2011: 147
  • 9 Rasmussen SC. Bull. Hist. Chem. 2014; 39: 64
  • 10 Rasmussen SC. Bull. Hist. Chem. 2015; 40: 45
  • 11 Rasmussen SC. Acetylene and Its Polymers: 150+ Years of History . Springer Briefs in Molecular Science; History of Chemistry, Springer: Heidelberg: 2018
  • 12 Wudl F, Kobayashi M, Heeger AJ. J. Org. Chem. 1984; 49: 3382
  • 13 Rasmussen SC, Pomerantz M. In 3rd ed. Handbook of Conducting Polymers . Skotheim TA, Reynolds JR. CRC Press; Boca Raton, FL: 2007: 12-1
    • 14a Havinga EE, ten Hoeve W, Wynberg H. Polym. Bull. 1992; 29: 119
    • 14b Havinga EE, ten Hoeve W, Wynberg H. Synth. Met. 1993; 55: 299
  • 15 Roncali J. Chem. Rev. 1997; 97: 173
  • 16 van Mullekom HA. M, Vekemans JA. J. M, Havinga EE, Meijer EW. Mater. Sci. Eng., R 2001; 32: 1
  • 17 Bundgaard E, Krebs FC. Sol. Energy Mater. Sol. Cells 2007; 91: 954
  • 18 Chochos CL, Choulis SA. Prog. Polym. Sci. 2011; 36: 1326
  • 19 Mulholland ME, Konkol KL, Anderson TE, Schwiderski RL, Rasmussen SC. Aust. J. Chem. 2015; 68: 1759
  • 20 Wen L, Heth CL, Rasmussen SC. Phys. Chem. Chem. Phys. 2014; 16: 7231
  • 21 Konkol KL, Schwiderski RL, Rasmussen SC. Materials 2016; 9: 404
  • 22 Rasmussen SC, Sattler DJ, Mitchell KA, Maxwell J. J. Lumin. 2004; 190: 111
  • 23 Mercier LG, Leclerc M. Acc. Chem. Res. 2013; 46: 1597
  • 24 Pouliot J.-R, Grenier F, Blaskovits JT, Beaupre S, Leclerc M. Chem. Rev. 2016; 116: 14225
  • 25 Bura T, Blaskovits JT, Leclerc M. J. Am. Chem. Soc. 2016; 138: 10056
  • 26 Morin P.-O, Bura T, Leclerc M. Mater. Horiz. 2016; 3: 11
  • 27 Bura T, Beaupré S, Légaré M.-A, Quinn J, Rochette E, Blaskovits JT, Fontaine F.-G, Pron A, Li Y, Leclerc M. Chem. Sci. 2017; 8: 3913
  • 28 Culver EW, Anderson TE, Navarrete JT. L, Delgado MC. R, Rasmussen SC. ACS Macro Lett. 2018 7. 1215
  • 29 Yuan J, Ouyang J, Cimrova V, Leclerc M, Najarid A, Zou Y. J. Mater. Chem. C 2017; 5: 1858
  • 30 Gedefaw D, Prosa M, Bolognesi M, Seri M, Andersson MR. Adv. Energy Mater. 2017; 7: 1700575
  • 31 Liu M, Gao Y, Zhang Y, Liu Z, Zhao L. Polym. Chem. 2017; 8: 4613
  • 32 Ames DE, Hall G, Warren BT. J. Chem. Soc. C 1968; 2617
  • 33 Ji J, Lee K.-I. J. Korean Chem. Soc. 2005; 49: 150
  • 34 Jonforsen M, Johansson T, Inganäs O, Andersson MR. Macromolecules 2002; 35: 1638
  • 35 Ng PK, Wing XG, Wong T, Chan WK. Macromol. Rapid Commun. 1997; 18: 1009
  • 36 Cheng J.-X, Huang Z.-S, Wang L, Cao D. Dyes Pigm. 2016; 131: 134
  • 37 Chen D, Zhong C, Zhao Y, Liu Y, Qin J. Mater. Chem. Front. 2017; 1: 2085
  • 38 Kenning DD, Mitchell KA, Calhoun TR, Funfar MR, Sattler DJ, Rasmussen SC. J. Org. Chem. 2002; 67: 9073
  • 39 Synthesis of 5,8-Dibromo-2,3-dihexylquinoxaline (Br2C6Qx)3,6-Dibromo-1,2-diaminobenzene36 (0.30 g, 1.13 mmol) was dissolved in absolute ethanol (60 mL), after which tetradecane-7,8-dione34 (0.28 g, 1.25 mmol) was added. The reaction was then heated at reflux for 3 h under nitrogen. The solvent was then removed via rotary evaporation and the sample purified by silica gel column chromatography with 5:95 (v/v) ethyl acetate/petroleum ether as the eluent. This resulted in the isolation of light-yellow needles in a yield of 80–85%; mp 69.8–70.4 °C. 1H NMR (400 MHz, CDCl3): δ = 7.81 (s, 2 H), 3.07 (t, 3J = 7.6 Hz, 4 H), 1.91 (p, 3J = 7.6 Hz, 4 H), 1.49 (m, 4 H), 137 (m, 8 H), 0.91 (t, 3J = 7.6 Hz, 6 H). 13C NMR (100 MHz): δ = 158.3, 140.2, 132.0, 123.4, 34.8, 31.8, 29.2, 27.8, 22.6, 14.1.
    • 40a Wang R, Zhang C, Wang W, Liu T. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 4867
    • 40b Edelmann MJ, Raimundo J.-M, Utesch NF, Diederich F, Boudon C, Gisselbrecht J.-P, Gross M. Helv. Chim. Acta 2002; 85: 2195
  • 41 High-Pressure Polymerization Conditions2,3-Dihexylthieno[3,4-b]pyrazine 38 (0.09 g, 0.285 mmol), 5,8-dibromo-2,3-dihexylquinoxaline (0.130 g, 0.285 mmol), Pd(OAc)2 (0.012 g, 0.053 mmol), tris(o-methoxyphenyl)phosphine (0.022 g, 0.064 mmol), K2CO3 (0.147 g, 1.03 mmol), and pivalic acid (0.036 g, 0.36 mmol) were all added to a microwave vial and put under nitrogen. The vial was then placed in a dry box where the cap was removed and 7 mL of anhydrous THF were added. A cap was then crimped onto the vial, and the vial was removed from the glove box where it was then stirred at 100 °C for 48 h. Upon completion, the polymer solution was added to 200 mL of methanol and stirred for 1 h in an ice bath. A dark blue-black precipitate formed and was filtered on a coarse frit multiple times until filtrate appeared yellow/clear. The precipitate was then washed with methanol and hexanes via Soxhlet extraction, after which the chloroform-soluble fraction was isolated to give 105 mg of polymer product.
  • 42 Vasilieva NV, Irtegova IG, Gritsan NP, Lonchakov AV, Makarov AY, Shundrin LA, Zibarev AV. J. Phys. Org. Chem. 2010; 23: 536
  • 43 Chénard E, Sutrisno A, Zhu L, Assary RS, Kowalski JA, Barton JL, Bertke JA, Gray DL, Brushett FR, Curtiss LA, Moore JS. J. Phys. Chem. C 2016; 120: 8461
    • 44a Wang E, Hou L, Wang Z, Hellström S, Zhang F, Inganäs O, Andersson MR. Adv. Mater. 2010; 22: 5240
    • 44b Kroon R, Gehlhaar R, Steckler TT, Henriksson PH, Muller C, Bergqvist J, Hadipour A, Heremans P, Andersson MR. Solar Energy Mater. Solar Cells 2012; 105: 280
  • 45 Cardona CM, Li W, Kaifer AE, David StockdaleD, Bazan GC. Adv. Mater. 2011; 23: 2367
  • 46 Guo Q, Dong J, Wan D, Wu D, You J. Macromol. Rapid Commun. 2013; 34: 522
  • 47 Nakanishi T, Shirai Y, Han L. J. Mater. Chem. A 2015; 3: 4229
  • 48 Homyak P, Liu Y, Liu F, Russel TP, Coughlin EB. Macromolecules 2015; 48: 6978
  • 49 Wang K, Huang J, Ko J, Leong WL, Wang M. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 3205
  • 50 Nakabayashi K, Fukuzawa H, Fujita K, Mori H. J. Polym. Sci., Part A: Polym. Chem. 2018; 56: 430