Synlett 2018; 29(19): 2529-2534
DOI: 10.1055/s-0037-1610286
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Photophysical Properties of Hexaphenylbenzene–Pyrrolo[3,2-b]pyrroles

Rafał Stężycki
a  Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland   eMail: dtgryko@icho.edu.pl
b  Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
,
David Reger
c  Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany   eMail: norbert.jux@fau.de
,
Helen Hoelzel
c  Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany   eMail: norbert.jux@fau.de
,
Norbert Jux*
c  Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany   eMail: norbert.jux@fau.de
,
a  Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland   eMail: dtgryko@icho.edu.pl
› Institutsangaben
The authors would like to thank the Foundation for Polish Science (Grant TEAM/2016-3/22) and Global Research Laboratory Program (2014K1A1A2064569) through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (Korea). N.J, H.H., and D. R. gratefully acknowledge support from the Deutsche Forschungsgemeinschaft via SFB 953 ‘Synthetic Carbon Allotropes’; D.R. acknowledges support from the Graduate School Molecular Science.
Weitere Informationen

Publikationsverlauf

Received: 27. August 2018

Accepted after revision: 29. August 2018

Publikationsdatum:
26. September 2018 (online)


Published as part of the Cluster Synthesis of Materials

Abstract

Methods for the synthesis of pyrrolo[3,2-b]pyrroles containing hexaphenylbenzene moieties at the 2- and 5-positions or the 1- and 4-positions have been developed. It was shown that placing a hexaphenylbenzene moiety at the 2- and 5-positions requires a Diels–Alder reaction between an alkyne-substituted pyrrolopyrrole core and a 2,3,4,5-tetraphenylcyclopenta-2,4-dien-1-one. The resulting dyes show a strong blue fluorescence that was hypsochromically shifted by chlorination at the 3- and 6-positions. The overall conjugation between the hexaphenylbenzene moieties and the pyrrolopyrrole core is limited, as evident from their photophysical properties. The hexaphenylbenzene moieties attached to the pyrrolo[3,2-b]pyrrole core could not be transformed into hexa-peri-hexabenzocoronenes through intramolecular oxidative aromatic coupling.

Supporting Information

 
  • References and Notes

    • 1a Vij V. Bhalla V. Kumar M. Chem. Rev. 2016; 116: 9565
    • 1b Lungerich D. Hitzenberger JF. Marcia M. Hampel F. Drewello T. Jux N. Angew. Chem. Int. Ed. 2014; 53: 12231
    • 1c Lungerich D. Hitzenberger JF. Donaubauer W. Drewello T. Jux N. Chem. Eur. J. 2016; 22: 16755
  • 2 Tanaka Y. Koike T. Akita M. Chem. Commun. 2010; 46: 4529
  • 3 Traber B. Wolff JJ. Rominger F. Oeser T. Gleiter R. Goebel M. Wortmann R. Chem. Eur. J. 2004; 10: 1227
  • 4 Geng Y. Fechtenkötter A. Müllen K. J. Mater. Chem. 2001; 11: 1634
  • 5 Hiraoka S. Hisanaga Y. Shiro M. Shionoya M. Angew. Chem. Int. Ed. 2010; 49: 1669
  • 6 Tomović Ž. van Dongen J. George SJ. Xu H. Pisula W. Leclère P. Smulders MM. J. De Feyter S. Meijer EW. Schenning AP. H. J. J. Am. Chem. Soc. 2007; 129: 16190
  • 7 Kobayashi K. Sato A. Sakamoto S. Yamaguchi K. J. Am. Chem. Soc. 2003; 125: 3035
    • 8a Chen L. Hernandez Y. Feng X. Müllen K. Angew. Chem. Int. Ed. 2012; 51: 7640
    • 8b Seyler H. Purushothaman B. Jones DJ. Holmes AB. Wong WW. H. Pure Appl. Chem. 2012; 84: 1047
    • 8c Narita A. Feng X. Hernandez Y. Jensen SA. Bonn M. Yang H. Verzhbitskiy IA. Casiraghi C. Hansen MR. Koch AH. R. Fytas G. Ivasenko O. Li B. Mali KS. Balandina T. Mahesh S. De Feyter S. Müllen K. Nat. Chem. 2014; 6: 126
    • 8d Quernheim M. Golling FE. Zhang W. Wagner M. Räder H.-J. Nishiuchi T. Müllen K. Angew. Chem. Int. Ed. 2015; 54: 10341
    • 9a Müller M. Iyer VS. Kübel C. Enkelmann VK. Müllen K. Angew. Chem. Int. Ed. 1997; 36: 1607
    • 9b Müller M. Kübel C. Müllen K. Chem. Eur. J. 1998; 4: 2099
  • 10 Suzuki S. Segawa Y. Itami K. Yamaguchi J. Nat. Chem. 2015; 7: 227
  • 11 Lungerich D. Reger D. Hoelzel H. Riedel R. Martin MM. J. C. Hampel F. Jux N. Angew. Chem. Int. Ed. 2016; 55: 5602
    • 12a Janiga A. Glodkowska-Mrowka E. Stoklosa T. Gryko DT. Asian J. Org. Chem. 2013; 2: 411
    • 12b Krzeszewski M. Thorsted B. Brewer J. Gryko DT. J. Org. Chem. 2014; 79: 3119
    • 13a Tasior M. Gryko DT. J. Org. Chem. 2016; 81: 6580
    • 13b Łukasiewicz Ł. Ryu HG. Mikhaylov A. Azarias C. Banasiewicz M. Kozankiewicz B. Ahn KH. Jacquemin D. Rebane A. Gryko DT. Chem. Asian J. 2017; 12: 1736
    • 13c Poronik YM. Mazur LM. Samoć M. Jacquemin D. Gryko DT. J. Mater. Chem. C 2017; 5: 2620
    • 13d Dereka B. Rosspeintner A. Krzeszewski M. Gryko DT. Vauthey E. Angew. Chem. Int. Ed. 2016; 55: 15624
    • 13e Domínguez R. Montcada NF. de la Cruz P. Palomares E. Langa F. ChemPlusChem 2017; 82: 1096
    • 13f Krzeszewski M. Kodama T. Espinoza EM. Vullev VI. Kubo T. Gryko DT. Chem. Eur. J. 2016; 22: 16478
    • 13g Mishra S. Krzeszewski M. Pignedoli CA. Ruffieux P. Fasel R. Gryko DT. Nat. Commun. 2018; 9: 1714
    • 14a Janiga A. Gryko DT. Chem. Asian J. 2014; 9: 3036
    • 14b Krzeszewski M. Gryko D. Gryko DT. Acc. Chem. Res. 2017; 50: 2334
  • 15 Ivanov AI. Dereka B. Vauthey E. J. Chem. Phys. 2017; 146: 164306
  • 16 Balasubramanyam RK. C. Kumar R. Ippolito SJ. Bhargava SK. Periasamy SR. Narayan R. Basak P. J. Phys. Chem. C 2016; 120: 11313
    • 17a Ji Y. Peng Z. Tong B. Shi J. Zhi J. Dong Y. Dyes Pigm. 2017; 139: 664
    • 17b Li K. Liu Y. Li Y. Feng Q. Hou H. Tang BZ. Chem. Sci. 2017; 8: 7258
    • 17c Sadowski B. Hassanein K. Ventura B. Gryko DT. Org. Lett. 2018; 20: 3183
  • 18 Wu J.-Y. Yu C.-H. Wen J.-J. Chang C.-L. Leung M.-k. Anal. Chem. 2016; 88: 1195
    • 19a Clausen C. Wartchow R. Butenschön H. Eur. J. Org. Chem. 2001; 93
    • 19b Mueller-Westerhoff UT. Zhou M. Tetrahedron Lett. 1993; 34: 571
  • 20 1,4-Bis(3,5-di-tert-butylphenyl)-2,5-bis{4′′-tert-butyl-[2′,3′,5′,6′-tetrakis(4-tert-butylphenyl)]-1,1′:4',1′′-terphenyl-4-yl}-1,4-dihydropyrrolo[3,2-b]pyrrole (10) Pyrrolo[3,2-b]pyrrole 8 (237 mg, 0.250 mmol) and 2,3,4,5-tetrakis(4-tert-butylphenyl)cyclopenta-2,4-dien-1-one (609 mg, 1.00 mmol) were placed in a dry Schlenk flask containing a magnetic stirring bar. The vessel was evacuated and backfilled with argon three times, and Ph2O (5 mL) was added. The mixture was heated at 250 °C for 42 h then cooled to r.t. EtOH (20 mL) was added, and the precipitated solid was collected by filtration and washed with EtOH. The crude product was refluxed in CH2Cl2 for 10 min, collected by filtration, washed with MeOH and pentane, and dried under vacuum to give a white powder, yield: 420 mg (80%); mp ~395 °C (dec.); Rf = 0.37 [silica gel, hexanes–CH2Cl2 (4:1)]. 1H NMR (500 MHz, THF-d 8): δ = 1.07 (s, 36 H), 1.08 (br s, 54 H), 1.33 (s, 36 H), 6.18 (s, 2 H), 6.60 (AA′BB′, J = 8.3 Hz, 8 H), 6.65 (AA′BB′, J = 8.4 Hz, 8 H), 6.68 (AA′BB′, J = 8.3 Hz, 8 H), 6.70 (AA′BB′, J = 8.5 Hz, 4 H), 6.78 (AA′BB′, J = 8.5 Hz, 8 H), 6.80 (AA′BB′, J = 8.5 Hz, 4 H), 6.85 (AA′BB′, J = 8.3 Hz, 8 H), 7.08 (d, J = 1.3 Hz, 4 H), 7.32 (t, J = 1.3 Hz, 2 H). 13C NMR (126 MHz, THF-d 8): δ = 31.5, 31.6 (2 C), 31.9, 34.7 (3 C), 35.6, 95.4, 119.7 (2 C), 120.4, 123.8 (2 C), 124.1, 125.9, 131.1, 132.0, 132.2, 132.6, 133.1, 135.8, 138.9, 139.1, 139.2, 139.2, 140.0, 140.8, 141.2, 141.4, 141.9, 148.0, 148.2, 148.4, 152.2. HRMS (ESI): m/z [M•+] calcd for C158H182N2: 2107.4303; found: 2107.4348. UV/Vis (THF): λmax (ε) = 389 nm (69000).
  • 21 Lewtak JP. Gryko D. Bao D. Sebai E. Vakuliuk O. Ścigaj M. Gryko DT. Org. Biomol. Chem. 2011; 9: 8178
  • 22 Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
  • 23 Janiga A. Bednarska D. Thorsted B. Brewer J. Gryko DT. Org. Biomol. Chem. 2014; 12: 2874