Synlett 2018; 29(19): 2562-2566
DOI: 10.1055/s-0037-1610280
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Characterization of a Fluorescent Dianthraceno­indacene

a  Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA   Email: haley@uoregon.edu
,
a  Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA   Email: haley@uoregon.edu
,
a  Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA   Email: haley@uoregon.edu
,
b  Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222-0100, USA
,
Evan R. Hanks
a  Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA   Email: haley@uoregon.edu
,
a  Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA   Email: haley@uoregon.edu
,
Lev N. Zakharov
c  CAMCOR, University of Oregon, Eugene, Oregon 97403-1433, USA
,
b  Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222-0100, USA
,
a  Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA   Email: haley@uoregon.edu
› Author Affiliations
We thank the National Science Foundation (CHE-1565780 to M.M.H., CHE-1608628 to M.A.P.) for support of this research.
Further Information

Publication History

Received: 12 July 2018

Accepted after revision: 22 August 2018

Publication Date:
14 September 2018 (online)


Published as part of the Cluster Synthesis of Materials

Abstract

A freely soluble dianthracenoindacene derivative has been synthesized using an ‘inside-out’ Friedel–Crafts alkylation method and is the first fluorescent diacenoindacene reported. Linear fusion of the anthracenes is confirmed by X-ray diffraction studies on the neutral molecule as well as its dianion. Based on predictions from our previous studies, this is also the least antiaromatic diacenoindacene derivative yet to be prepared, which is reflected in its highly negative and irreversible reduction. With its paratropicity essentially eliminated, we posit that the molecule is no longer deactivated by a conical intersection, typical of antiaromatic molecules, and therefore fluorescence is restored. This follows the trend shown in the related dianthracenopentalenes, with the reappearance of fluorescence when the outer acene groups are extended to linearly-fused anthracene moieties.

Supporting Information

 
  • References and Notes

  • 1 Johnson CA. Haley MM. In Carbon-Rich Compounds: From Molecules to Materials . Haley MM. Tykwinski RR. Wiley-VCH; Weinheim: 2006: 1
  • 2 Harvey RG. Polycyclic Aromatic Hydrocarbons . Wiley-VCH; New York, NY: 1997
  • 3 Clar E. Polycyclic Hydrocarbons . Springer; Berlin: 1964
  • 4 Anthony JE. Facchetti A. Heeney M. Marder SR. Zhan X. Adv. Mater. 2010; 22: 3876
  • 5 Bendikov M. Wudl F. Perepichka DF. Chem. Rev. 2004; 104: 4891
  • 6 Schlenker C. Thompson M. Top. Curr. Chem. 2012; 312: 175
  • 7 Coropceanu V. Cornil J. da Silva Filho DA. Olivier Y. Silbey R. Bredas JL. Chem. Rev. 2007; 107: 926
  • 8 Zeng Z. Shi X. Chi C. López Navarrete JT. Casado J. Wu J. Chem. Soc. Rev. 2015; 44: 6578
  • 9 Hasegawa T. Takeya J. Sci. Technol. Adv. Mater. 2009; 10: 1
  • 10 Diao Y. Tee BC. K. Giri G. Xu J. Kim DH. Becerril HA. Stoltenberg RM. Lee TH. Xue G. Mannsfeld SC. B. Bao Z. Nat. Mater. 2013; 12: 665
  • 11 Breslow R. Schneebeli ST. Tetrahedron 2011; 67: 10171
  • 12 Breslow R. Foss FW. Jr. J. Phys.: Condens. Matter 2008; 20: 374104
  • 13 Chen W. Li H. Widawsky JR. Appayee C. Venkataraman L. Breslow R. J. Am. Chem. Soc. 2014; 136: 918
  • 14 Mahendran A. Gopinath P. Breslow R. Tetrahedron Lett. 2015; 56: 4833
  • 15 Cao J. London G. Dumele O. von Wantoch Rekowski M. Trapp N. Ruhlmann L. Boudon C. Stanger A. Diederich F. J. Am. Chem. Soc. 2015; 7178
  • 16 Frederickson CK. Rose BD. Haley MM. Acc. Chem. Res. 2017; 50: 977
  • 17 Frederickson CK. Zakharov LN. Haley MM. J. Am. Chem. Soc. 2016; 138: 16827
  • 18 Marshall JL. Uchida K. Frederickson CK. Schutt C. Zeidell AM. Goetz KP. Finn TW. Jarolimek K. Zakharov LN. Risko C. Herges R. Jurchescu OD. Haley MM. Chem. Sci. 2016; 7: 5547
  • 19 Young BS. Chase DT. Marshall JL. Vonnegut CL. Zakharov LN. Haley MM. Chem. Sci. 2014; 7: 1008
  • 20 Gershoni-Poranne R. Stanger A. Chem. Eur. J. 2014; 20: 5673
  • 21 Rahalkar, A.; Stanger, A., http://schulich.technion.ac.il/Amnon_Stanger.htm.
  • 22 Rudebusch GE. Zafra JL. Jorner K. Fukuda K. Marshall JL. Arrechea-Marcos I. Espejo GL. Ponce Ortiz R. Gómez-García CJ. Zakharov LN. Nakano M. Ottosson H. Casado J. Haley MM. Nat. Chem. 2016; 8: 753
  • 23 Goto K. Yamaguchi R. Hiroto S. Ueno H. Kawai T. Shinokubo H. Angew. Chem. Int. Ed. 2012; 51: 10333
    • 24a Yang X. Liu D. Miao Q. Angew. Chem. Int. Ed. 2014; 53: 6786
    • 24b Shi Z. Zhang X. Yang G. Su Z. Cui Z. Tetrahedron 2011; 67: 4110
  • 25 Crystallographic Data for 1 C98H120Si4, M = 1410.29, 0.005 × 0.005 × 0.04 mm, T = 173(2) K, monoclinic, space group P21/c, a = 40.216(2) Å, b = 14.9442(8) Å, c = 14.5658(7) Å, β = 95.291(4)°, V = 8716.7(8) Å3, Z = 4, D c= 1.075 Mg/m3, μ(Cu) = 0.953 mm–1, F(000) = 3056, 2θ max= 100.61°, 31572 reflections, 8580 independent reflections [R int = 0.1027], R1 = 0.1025, wR2 = 0.2666 and GOF = 1.039 for 8580 reflections (923 parameters) with I > 2σ(I), R1 = 0.1882, wR2 = 0.3254 and GOF = 1.046 for all reflections, max/min residual electron density +0.636/–0.414 eÅ–3. CCDC-1838067 contains the supplementary crystallographic data for this compound. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 26 For this particular synthetic pathway, the importance of the proximity both the TIPSethynyl and the mesityl groups for producing an oxidizable compound (e.g., 4) must be emphasized. Efforts to use less bulky arenes have met with failure despite multiple attempts.
  • 27 Crystallographic Data for 12– [Na+(C4H8O)3]2[C98H120Si4 2–], M = 1888.89, 0.005 × 0.05 × 0.05 mm, T = 100(2) K, monoclinic, space group Pc, a = 8.616(3) Å, b = 18.843(6) Å, c = 37.287(12) Å, β = 92.192(4)°, V = 6049(3) Å3, Z = 2, D c= 1.037 Mg/m3, μ(Cu) = 0.105 mm–1, F(000) = 2052, 2θ max= 51.182°, 55395 reflections, 19990 independent reflections [R int = 0.5150], R1 = 0.3135, wR2 = 0.4411 and GOF = 1.044 for 3522 reflections (1123 parameters) with I > 2σ(I), R1 = 0.6349, wR2 = 0.5956 and GOF = 1.219 for all reflections, max/min residual electron density +0.7/–0.3 eÅ–3. CCDC-1862587 contains the supplementary crystallographic data for this compound. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 28 Zabula AV. Spisak SN. Filatov AS. Grigoryants VM. Petrukhina MA. Chem. Eur. J. 2012; 18: 6476
  • 29 Spisak SN. Wei Z. Rogachev AYu. Amaya T. Hirao T. Petrukhina MA. Angew. Chem. Int. Ed. 2017; 56: 2582
  • 30 Zhou Z. Spisak SN. Xu Q. Rogachev AYu. Wei Z. Marcaccio M. Petrukhina MA. Chem. Eur. J. 2018; 24: 3455
  • 31 Chase DT. Fix AG. Kang SJ. Rose BD. Weber CD. Zhong Y. Zakharov LN. Lonergan MC. Nuckolls C. Haley MM. J. Am. Chem. Soc. 2012; 134: 10349
  • 32 Park JH. Chung DS. Park JW. Ahn T. Kong H. Jung YK. Lee J. Yi MH. Park CE. Kwon SK. Shim HK. Org. Lett. 2007; 9: 2573
  • 33 Fudickar W. Linker T. J. Am. Chem. Soc. 2012; 134: 15071
  • 34 Klann R. Bäuerle RJ. Laermer F. Elsaesser T. Niemeyer M. Lüttke W. Chem. Phys. Lett. 1990; 169: 172
  • 35 Rose BD. Shoer LE. Wasielewski MR. Haley MM. Chem. Phys. Lett. 2014; 616-617: 137
  • 36 Shen J. Yuan D. Qiao Y. Shen X. Zhang Z. Zhong Y. Yi Y. Zhu X. Org. Lett. 2014; 16: 4924
  • 37 Dai G. Chang J. Zhang W. Bai S. Huang K. Xu J. Chi C. Chem. Commun. 2015; 51: 503
  • 38 Synthesis of Compound 1 Toluene (50 mL) was added to a degassed flask containing DDQ (60 mg, 0.26 mmol) and 4 (236 mg, 0.167 mmol). The reaction was heated at 80 °C for 2.5 h monitoring by TLC for disappearance of the fluorescent starting material spot. Once 4 was consumed, the cooled reaction mixture was passed through a SiO2 plug using 3:2 hexanes/CH2Cl2 as eluent and then the solvent was removed in vacuo. The resulting crude solid was triturated with warm (ca. 70 °C) EtOH and filtered, which upon cooling resulted in a dark purple crystalline solid (191 mg, 80%). 1H NMR (600 MHz, CDCl3): δ = 8.85 (s, 2 H), 8.48 (ddt, J = 9.8, 7.2, 3.1 Hz, 4 H), 8.04 (s, 2 H), 7.53 (dt, J = 6.6, 3.3 Hz, 4 H), 7.19 (s, 2 H), 7.04 (s, 4 H), 1.27–1.17 (br s, 42 H), 1.11–1.06 (br s, 42 H). 13C NMR (151 MHz, CDCl3): δ = 143.30, 142.86, 140.15, 140.12, 137.38, 137.04, 136.28, 133.87, 132.69, 132.59, 132.09, 129.56, 128.49, 127.37, 127.33, 127.12, 126.90, 119.84, 119.35, 119.24, 119.04, 115.56, 105.01, 104.72, 103.67, 103.63, 21.37, 20.45, 18.92, 18.81, 11.75, 11.52. UV-vis (cyclohexane): λmax (ε) 651 (37900), 615 (93300), 570 (67550), 447 (102350), 426 (109000) nm. Fluorescence (cyclohexane): λmax (Φ) 664 nm (0.01). HRMS (ESI): m/z calcd for C98H120Si4 [M + H]+: 1409.8545; found: 1409.8503.