Synthesis 2019; 51(02): 530-537
DOI: 10.1055/s-0037-1610270
paper
© Georg Thieme Verlag Stuttgart · New York

A Synthesis of 4-Chloro-2-(trichloromethyl)pyrimidines and Their Study in Nucleophilic Substitution

Michelle L. Trujillo-Lagunas
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, C.P. 50180, México   Email: mromeroo@uaemex.mx
,
Ignacio Medina-Mercado
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, C.P. 50180, México   Email: mromeroo@uaemex.mx
,
Ivann Zaragoza-Galicia
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, C.P. 50180, México   Email: mromeroo@uaemex.mx
,
b   Medicinal and Natural Products Chemistry, The University of Iowa, Iowa City, IA 52242, USA
,
Moisés Romero-Ortega*
a   Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, C.P. 50180, México   Email: mromeroo@uaemex.mx
› Author Affiliations
The Consejo Nacional de Ciencia y Tecnología (Grant 26659) is gratefully acknowledged and by the fellowship to Michelle Trujillo-Lagunas (EDT, SNI-III).
Further Information

Publication History

Received: 16 July 2018

Accepted after revision: 15 August 2018

Publication Date:
11 September 2018 (online)


Abstract

A convenient two-step, one-pot synthesis of 4-chloro-2-(trichloromethyl)pyrimidines starting from 2-(trichloromethyl)-1,3-diazabutadienes is described. These nitrogen heterocycles were prepared by a sequential acylation/intramolecular cyclization reaction between 2-(trichloromethyl)-1,3-diazabutadienes and acyl chlorides in the presence of triethylamine followed by treatment with POCl3. This is the first report for the synthesis of this type of 4-chloro-2-(trichloromethyl)pyrimidine derivatives and serves as a source for a wide variety of other substituted pyrimidines by nucleophilic substitution reactions.

Supporting Information

 
  • References

  • 1 Tobol HK. US 4717726, 1988 ; Chem. Abstr. 1988, 108, 204507
  • 2 Harrison SD. Jr. Plowman J. Dykes DJ. Waud WE. Griswold DP. Jr. Cancer Res. 1991; 51: 1979
  • 3 Plowman J. Harrison SD. Jr. Dykes DJ. Paull KD. Narayanan V. Tobol HK. Griswold DP. Cancer Res. 1989; 49: 1909
  • 4 Berlin J. Tutsch K. Stover V. Arzoomanian R. Alberti D. Feierabend C. Wilding G. Proc. Am. Assoc. Cancer Res. 1995; 36: 238
  • 5 Reid JM. Mathiesen DA. Benson LM. Kuffel MJ. Ames MM. Cancer Res. 1992; 52: 2830
  • 6 Lopez S. McCabe T. McElhinney RS. McMurry TB. H. Rozas I. Tetrahedron Lett. 2009; 50: 6022
  • 7 Tiwari A. Waud WR. Struck RF. Bioorg. Med. Chem. 2002; 10: 3593
  • 8 Boger DL. Tetrahedron 1983; 39: 2869
  • 9 Jayakumar S. Ishar MP. S. Mahajan MP. Tetrahedron 2002; 58: 379
  • 10 Jayakumar S. Singh P. Mahajan MP. Tetrahedron 2004; 60: 4315
  • 11 Boger DL. Curran TT. J. Org. Chem. 1990; 55: 5439
  • 12 Boger DL. Kasper AM. J. Am. Chem. Soc. 1989; 111: 1517
  • 13 Morel G. Marchand E. Foucaud A. Toupet L. J. Org. Chem. 1989; 54: 1185
  • 14 Jayakumar S. Ishar MP. S. Mahajan MP. Tetrahedron Lett. 1998; 39: 6557
  • 15 Ibnusaud I. Padma Malar EJ. Sundaram N. Tetrahedron Lett. 1990; 31: 7357
  • 16 Guzmán A. Romero M. Talamás FX. Villena R. Greenhouse R. Muchowski MJ. J. Org. Chem. 1996; 61: 2470
  • 17 Barluenga J. Tomás M. Ballesteros A. López LA. Tetrahedron Lett. 1989; 30: 4573
  • 18 Sain B. Singh SP. Sandhu JS. Tetrahedron Lett. 1991; 32: 5151
  • 19 Mazumdar SN. Sharma M. Mahajan MP. Tetrahedron Lett. 1987; 28: 2641
  • 20 Burger K. Huber E. Kahl T. Partscht H. Ganzer M. Synthesis 1988; 44
  • 21 Lechuga-Eduardo H. Olivo HF. Romero-Ortega M. Eur. J. Org. Chem. 2014; 5910
  • 22 Matsuda I. Yamamoto S. Ishii Y. J. Chem. Soc., Perkin Trans. 1 1976; 1528
  • 23 Luthardt P. Würthwein EU. Tetrahedron Lett. 1988; 29: 921
  • 24 Luthardt P. Möller MH. Rodewald U. Würthwein EU. Chem. Ber. 1989; 122: 1705
  • 25 Rossi E. Abbiati G. Pini E. Tetrahedron 1997; 53: 14107
  • 26 Mazumdar SN. Ibnusaud I. Mahajan MP. Tetrahedron Lett. 1986; 27: 5875
  • 27 Mazumdar SN. Mahajan MP. Tetrahedron 1991; 47: 1473
  • 28 Mazumdar SN. Mukherjee S. Sharma AK. Sengupta D. Mahajan MP. Tetrahedron Lett. 1994; 35: 7579
  • 29 Mukherjee S. Mazumdar SN. Sharma AK. Mahajan MP. Heterocycles 1998; 47: 933
  • 30 Dey PD. Sharma AK. Bharatam PV. Mahajan MP. Tetrahedron 1997; 53: 13829
  • 31 Li X. Xu J. J. Org. Chem. 2013; 78: 347
  • 32 Bharatam PV. Kumar RS. Mahajan MP. Org. Lett. 2000; 2: 2725
  • 33 Bogdanowicz-Szwed K. Krasodomska M. Monatsh. Chem. 1996; 127: 1273
  • 34 Seballos-Resendiz A. Lechuga-Eduardo H. Barroso-Flores J. Romero-Ortega M. Synthesis 2016; 48: 2205
  • 35 Medina-Mercado I. Zaragoza-Galicia I. Olivo HF. Romero-Ortega M. Synthesis 2018; 50 in press; DOI: 10.1055/s-0037-1610444.
  • 36 Arnott EA. Chan LC. Cox BG. Meyrick B. Philips A. J. Org. Chem. 2011; 76: 1653
  • 37 Yavari I. Nematpour M. Sodagar E. Synlett 2013; 24: 165
  • 38 Yavari I. Malekafzali A. Eivazzadeh-Keihan R. Skoulika S. Alivaisi R. Tetrahedron Lett. 2016; 57: 1733
  • 39 Unger L. Accorsi M. Eidamshaus C. Reich D. Zimmer R. Reissig H.-U. Synthesis 2018; 50: in press; DOI: 10.1055/s0037-1609576
  • 40 Guzman A. Romero M. Talamás FX. Muchowski JM. Tetrahedron Lett. 1992; 33: 3449
  • 41 Caballero-García G. Romero-Ortega M. Barroso-Flores J. Phys. Chem. Chem. Phys. 2016; 18: 27300
  • 42 Romero-Reyes MA. Zaragoza-Galicia I. Olivo HF. Romero-Ortega M. J. Org. Chem. 2016; 81: 9515