Synthesis 2018; 50(24): 4855-4866
DOI: 10.1055/s-0037-1610254
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Sulfinate Esters and Sulfinamides via Activated­ Esters of p-Toluenesulfinic Acid

Sayed Habibul Gafur
,
Stephanie L. Waggoner
,
Eric Jacobsen
,
Christopher G. Hamaker
,
Shawn R. Hitchcock*
Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA   Email: hitchcock@ilstu.edu
› Author Affiliations
The authors acknowledge support of this research by the Department of Chemistry at Illinois State University.
Further Information

Publication History

Received: 09 June 2018

Accepted after revision: 25 July 2018

Publication Date:
21 August 2018 (online)


Abstract

Sulfinate esters were prepared by the process of activating p-toluenesulfinic acid with either cyanuric chloride, methanesulfonyl chloride, or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl). Activation of p-toluenesulfinic acid with cyanuric chloride led to the formation of sulfinate esters that were accompanied by the formation of the corresponding sulfones. The use of methanesulfonyl chloride for activation via methanesulfonic p-toluenesulfinic anhydride afforded mixtures of sulfinate esters and methanesulfonates. The use of the carbodiimide EDC proved to yield the best results with the highly selective formation of the target sulfinate esters. The use of trimethylacetic p-toluenesulfinic anhydride or cyanuric chloride to achieve the synthesis of sulfinamides proved to be ineffective due to poor chemoselectivity of the nucleophilic attack on the activated p-toluenesulfinic acid anhydride. Ultimately, the use of EDC-HCl to form the sulfinamides proved to be the best pathway for synthesis.

Supporting Information

 
  • References

    • 1a Robak MT. Herbage MA. Ellman JA. Chem. Rev. 2010; 110: 3600
    • 1b Khiar N. Fernandez I. Chem. Rev. 2003; 103: 3651
  • 2 Malwal SR. Labade A. Andhalkar AS. Sengupta K. Chakrapani H. Chem. Commun. 2014; 50: 11533
  • 3 Hemmi M. Shindo Y. Nakajima T. Nishiyama S. Oka K. Sato M. Hiruta Y. Citterio D. Suzuki K. Chem. Asian J. 2018; 13: 648
    • 4a Douglass IB. J. Org. Chem. 1965; 30: 633
    • 4b Douglass IB. Farah BS. Thomas EG. J. Org. Chem. 1960; 26: 1996
    • 5a Peltier HM. Evans JW. Ellman JA. Org. Lett. 2005; 7: 1733
    • 5b Evans JW. Fierman MB. Miller SJ. Ellman JA. J. Am. Chem. Soc. 2004; 126: 8134
    • 5c Khiar N. Alcudia F. Espartero J.-L. Rodríguez L. Fernández I. J. Am. Chem. Soc. 2000; 122: 7598
    • 5d Whitesell JK. Wong M.-S. J. Org. Chem. 1991; 56: 4552
    • 5e Harpp DN. Friedlander BT. Larsen C. Steliou K. Stockton A. J. Org. Chem. 1978; 43: 3481
    • 6a Tranquilino A. Andrade SR. C. P. da Silva AP. M. Menezes PH. Oliveira RA. Tetrahedron Lett. 2017; 58: 1265
    • 6b Huang M. Hu L. Shen H. Liu Q. Hussain MI. Pan J. Xiong Y. Green Chem. 2016; 18: 1874
    • 7a Hajipour AR. Falahati AR. Ruoho AE. Tetrahedron Lett. 2006; 47: 2717
    • 7b Furukawa M. Ohkawara T. Noguci Y. Nishikawa M. Tomimatsu M. Chem. Pharm. Bull. 1980; 28: 134
    • 7c Furukawa M. Okawara T. Noguchi Y. Nishikawa M. Synthesis 1978; 441
    • 7d Miyaji Y. Minato H. Kobayashi M. Bull. Chem. Soc. Jpn. 1971; 44: 862
  • 8 Klunder JM. Sharpless KB. J. Org. Chem. 1987; 52: 2598
    • 9a Pogaku N. Krishna PR. Prapurna YL. Synth. Commun. 2017; 47: 1239
    • 9b Kadari L. Krishna PR. Prapurna YL. Adv. Synth. Cat. 2016; 358: 3863
  • 10 Bu B. Li Z. Qian P. Han J. Pan Y. Chem. Asian J. 2015; 11: 478
  • 11 Choudhary D. Khatri V. Basak K. Org. Lett. 2018; 20: 1703
  • 12 Jacobsen E. Chavda MK. Zikpi KM. Waggoner SL. Passini DJ. Wolfe JA. Larson R. Beckley C. Hamaker CG. Hitchcock SR. Tetrahedron Lett. 2017; 58: 3073
  • 13 Blotny G. Tetrahedron Lett. 2003; 44: 1499
    • 14a Blotny G. Tetrahedron 2006; 62: 9507
    • 14b De Luca L. Giacomelli G. Porcheddu A. Org. Lett. 2002; 4: 553
    • 14c De Luca L. Giacomelli G. Porcheddu A. J. Org. Chem. 2001; 66: 7907
    • 15a Alcohols derived from the Baylis–Hillman reaction also form sulfones. See reference 12.
    • 15b Benzylic and allylic sulfinate esters can be rearranged to sulfones by palladium-catalyzed 1,3-rearrangements, see: Jagusch T. Gais H.-J. Bondarev O. J. Org. Chem. 2004; 69: 2731

      Alternate sulfinamide syntheses:
    • 16a Dai Q. Zhang J. Adv. Synth. Catal. 2018; 360: 1123
    • 16b Harmata M. Zheng P. Huang C. Gomes MG. Ying W. Ranyanil K.-O. Balan G. Calkins NL. J. Org. Chem. 2007; 72: 683
    • 16c Drabowicz J. Pacholczyk M. Phosphorus, Sulfur Relat. Elem. 1987; 29: 257
    • 16d Furukawa M. Okawara T. Synthesis 1976; 339
  • 17 Afonso CA. M. Lourenço NM. T. Rosatella A. deA. Molecules 2006; 11: 81