Synlett 2018; 29(15): 2011-2014
DOI: 10.1055/s-0037-1610253
letter
© Georg Thieme Verlag Stuttgart · New York

A Synthesis of Novel Perinaphthenones from Acetylenic Esters and Acenaphthoquinone–Malononitrile Adduct in the Presence of Triphenylphosphine

Issa Yavari*
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Aliyeh Khajeh-Khezri
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Mohammad Reza Halvagar
b   Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
› Author Affiliations
We gratefully acknowledge the financial support from the Research Council of Tarbiat Modares University.
Further Information

Publication History

Received: 16 June 2018

Accepted after revision: 25 July 2018

Publication Date:
23 August 2018 (online)


Abstract

A facile protocol involving Tebby zwitterions (PPh3-acetylenic esters) and the Knoevenagel condensation product of acenaphthylene-1,2-dione with malononitrile or ethyl cyanoacetate for the selective synthesis of a new series of perinaphthenone derivatives is described. Triphenylphosphine plays a catalytic role in these transformations. The structure of a typical product was confirmed by X-ray crystallography. The merits of this method include high yields of products, good atom economy, and a metal-free catalyst.

Supporting Information

 
  • References and Notes

  • 1 Schmidt R. Tanielian C. Dunsbach R. Wol C. J. Photochem. Photobiol., A 1994; 79: 11
  • 2 Otálvaro F. Nanclares J. Vásquez LE. Quiñones W. Echeverri F. Arango R. Schneider B. J. Nat. Prod. 2007; 70: 887
  • 3 Hölscher D. Schneider B. J. Nat. Prod. 2000; 63: 1027
  • 4 Hidalgo W. Duque L. Saez J. Arango R. Gil J. Rojano B. Schneider B. Otálvaro F. J. Agric. Food Chem. 2009; 57: 7417
  • 5 Turro NJ. Modern Molecular Photochemistry . University Science Books; Sausalito: 1991
  • 6 Darmanyan AP. Foote CS. J. Phys. Chem. 1993; 97: 5032
  • 7 Redmond RW. Braslavsky SE. Chem. Phys. Lett. 1988; 148: 523
  • 8 Xiao Y. Liu F. Chen Z. Zhu M. Xu Y. Qian X. Chem. Commun. 2015; 51: 6480; and citations therein
  • 9 Yavari I. Khalili G. Synlett 2010; 1862
  • 10 Yavari I. Khalili G. Mirzaei A. Helv. Chim. Acta 2010; 93: 277
  • 11 Yavari I. Azad L. Sanaeishoar T. Monatsh. Chem. 2011; 142: 177
  • 12 Yavari I. Nematpour M. Tetrahedron Lett. 2013; 54: 5061
  • 13 For a recent review, see: Yavari I. Khajeh-Khezri A. Synthesis 2018; DOI: 10.1055/s-0037-1610209.
  • 14 1H-Phenalen-1-one Derivatives 4aj; General Procedure A mixture of PPh3 (0.026 g, 0.1 mmol) and CH2Cl2 (5 mL) at 0 °C was added dropwise over 10 min to a stirred solution of the appropriate Knoevenagel adduct 1 or 2 (1 mmol) and acetylenic ester 3 (1 mmol) in CH2Cl2 (5 mL). The mixture was then allowed to warm to r.t. and stirred for 12 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, hexane–EtOAc (2:1)]. Dimethyl 2-Cyano-3-(2-cyano-1-oxo-1H-phenalen-3-yl)but-2-enedioate (4a) Yellow solid; yield: 0.31 g (84%); mp 185–190 °C. IR (KBr): 3057, 2952, 2194 (CN), 1728 (C=O), 1654 (C=O), 1571, 1437 (C=CAr), 1255, 1008, 778 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.94 (s, 3 H, MeO), 4.02 (s, 3 H, MeO), 7.77 (t, 3 J = 7.5 Hz, 1 H Ar-H), 7.92 (t, 3 J = 7.5 Hz, 1 H Ar-H), 8.13 (d, 3 J = 7.5 Hz, 1 H, Ar-H), 8.26 (d, 3 J = 8.0 Hz, 1 H Ar-H), 8.30 (d, 3 J = 8.0 Hz, 1 H Ar-H), 8.78 (d, 3 J = 7.5 Hz, 1 H Ar-H). 13C NMR (125 MHz, CDCl3): δ = 53.9 (2 × MeO), 111.1 (CN), 111.8 (CN), 112.3 (C), 113.0 (C), 122.5 (C), 126.7 (CH), 126.8 (C), 127.9 (CH), 131.2 (C), 131.9 (C), 132.5 (CH), 133.6 (CH), 136.3 (CH), 136.7 (CH), 150.5 (C), 153.1 (C), 158.6 (C=O), 162.1 (C=O), 177.7 (C=O). EI-MS: m/z (%) = 372 (M+, 82), 313 (53), 299 (48), 272 (51), 255 (100), 226 (50), 200 (32). Anal. Calcd for C21H12N2O5 (372.34): C, 67.74; H, 3.25; N, 7.52. Found: C, 67.95; H, 3.32; N, 7.61. Dimethyl 2-Cyano-3-[2-(ethoxycarbonyl)-1-oxo-1H-phenalen-3-yl]but-2-enedioate (4f) Yellow solid; yield: 0.36 g (86%); mp 180–185 °C. IR (KBr): 3055, 2988, 2214 (CN), 1727 (C=O), 1625 (C=O), 1588, 1370 (C=CAr), 1269, 780 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 1.25 (t, 3 J = 7.0 Hz, 3 H Me), 3.28 (s, 3 H, MeO), 3.52 (s, 3 H, MeO), 4.48 (q, 3 J = 7.0 Hz, 2 H, CH2O), 7.73 (t, 3 J = 7.5 Hz, 1 H Ar-H), 7.88 (t, 3 J = 7.5 Hz, 1 H Ar-H), 8.10 (d, 3 J = 8.0 Hz, 1 H, Ar-H), 8.31 (d, 3 J = 8.0 Hz, 1 H Ar-H), 8.33 (d, 3 J = 8.0 Hz, 1 H Ar-H), 8.64 (d, 3 J = 7.5 Hz, 1 H Ar-H). 13C NMR (125 MHz, CDCl3): δ = 13.8 (Me), 52.0, 52.7 (2 × MeO), 64.6 (CH2O), 114.6 (CN), 122.9 (C), 126.1 (CH), 126.5 (CH), 127.1 (C), 127.6 (C), 128.4 (C), 128.5 (CH), 128.7 (CH), 129.2 (C), 131.3 (C), 131.9 (CH), 133.6 (CH), 149.1 (C), 150.7 (C), 158.3 (C=O), 161.8 (C=O), 162.3 (C=O), 187.2 (C=O). EI-MS: m/z (%) = 419 (M+, 91), 360 (62), 345 (53), 318 (52), 301 (100), 275 (42), 246 (25), 202 (34). Anal. Calcd for C23H17NO7 (419.10): C, 65.87; H, 4.09; N, 3.34. Found: C, 65.99; H, 4.16; N, 3.41.
  • 15 X-Ray Crystal-Structure Determination of 4c The X-ray diffraction measurements were carried out on STOE IPDS 2T diffractometer with graphite-monochromated Mo Kα radiation. A single crystal suitable for X-ray analysis was grown from DMSO solution, mounted on a glass fiber, and used for data collection. Compound 4c crystallizes in the monoclinic crystal system with a = 1062.8(2) pm, b = 1862.6(4) pm, c = 1278.5(3) pm, β = 109.11(3)°; cell volume = 2.3914(10) nm3. Orientation matrices for data collection were obtained by least-square refinement of 12379 diffraction data for compound 4c. The diffraction data were collected in a series of ω scans with 1° oscillations and were integrated by using the Stoe X-AREA software package.18 A numerical absorption correction was applied by using X-Red32 software. The structure was solved by direct methods and subsequent difference Fourier maps and then refined on F 2 by a full-matrix least-squares procedure using anisotropic displacement parameters. Atomic factors are from the International Tables for X-ray Crystallography. All non­hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. All refinements were performed by using the X-STEP32, SHELXL-2014, and WinGX-2013.3 programs.19 CCDC 1502615 contains the supplementary crystallographic data for compound 4c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 16 Eliel EL. Wilen SH. Stereochemistry of Organic Compounds . Wiley; Chichester: 1994. Chap. 9 569
  • 17 Lenk R. Tessier A. Lefranc P. Silvestre V. Planchat A. Blot V. Dubreuil D. Lebreton J. J. Org. Chem. 2014; 79: 9754
  • 18 X-AREA: Program for the Acquisition and Analysis of Data, Version 1.30. Stoe & Cie GmbH; Darmstadt: 2005
    • 19a Farrugia LJ. J. Appl. Crystallogr. 1999; 32: 837
    • 19b Spek AL. J. Appl. Crystallogr. 2003; 36: 7
    • 19c Allen FH. Johnson O. Shields GP. Smith BR. Towler M. J. Appl. Crystallogr. 2004; 37: 335
    • 19d Macrae CF. Edgington PR. McCabe P. Pidcock E. Shields GP. Taylor R. Towler M. van de Streek J. J. Appl. Crystallogr. 2006; 39: 453
    • 19e Burnett MN. Johnson CK. ORTEP-III Report ORNL-6895 . Oak Ridge National Laboratory; Oak Ridge: 1996
    • 19f Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112