Synlett 2018; 29(15): 1983-1988
DOI: 10.1055/s-0037-1610235
letter
© Georg Thieme Verlag Stuttgart · New York

Exploration of the Role of Double Schiff Bases as Catalytic Intermediates in the Knoevenagel Reaction of Furanic Aldehydes: Mechanistic Considerations

a   Research Group Biopolymers/Green Chemistry, Centre of Expertise BioBased Economy, Avans University of Applied Science, Lovensdijkstraat 61, 4818 AJ Breda, The Netherlands   Email: jam.vanschijndel@avans.nl
b   Department of Chemical Engineering and Chemistry, Lab of Chemical Reactor Engineering/Polymer Reaction Engineering, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
,
Luiz Alberto Canalle
a   Research Group Biopolymers/Green Chemistry, Centre of Expertise BioBased Economy, Avans University of Applied Science, Lovensdijkstraat 61, 4818 AJ Breda, The Netherlands   Email: jam.vanschijndel@avans.nl
,
Dennis Molendijk
a   Research Group Biopolymers/Green Chemistry, Centre of Expertise BioBased Economy, Avans University of Applied Science, Lovensdijkstraat 61, 4818 AJ Breda, The Netherlands   Email: jam.vanschijndel@avans.nl
,
Jan Meuldijk
b   Department of Chemical Engineering and Chemistry, Lab of Chemical Reactor Engineering/Polymer Reaction Engineering, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
› Author Affiliations
The authors are grateful for the financial support from Netherlands Organization for Scientific Research (NWO) (grant 023.007.020 awarded to Jack van Schijndel).
Further Information

Publication History

Received: 12 April 2018

Accepted after revision: 17 July 2018

Publication Date:
13 August 2018 (online)


Abstract

This paper presents mechanistic considerations on an efficient, green, and solvent-free Knoevenagel procedure for the chemical transformation of furanic aldehydes into their corresponding α,β-unsaturated compounds. In the proposed mechanism furanic aldehydes react with ammonia, released from ammonium salts, to form a catalytically active double Schiff base. The catalytic intermediates involved in the condensation step are characterized.

Supporting Information

 
  • References and Notes

  • 1 Romani F. Corrieri R. Braga V. Ciardelli F. Polymer 2002; 43: 1115
  • 2 Ju Y. Varma RS. J. Org. Chem. 2006; 71: 135
  • 3 Ansari A. Ali A. Asif M. New J. Chem. 2016; 41: 16
  • 4 Eftekhari-Sis B. Zirak M. Akbari A. Chem. Rev. 2013; 113: 2958
  • 5 Chiriac CI. Tanasa F. Onciu M. Molecules 2005; 10: 481
  • 6 Jessop PG. Green Chem. 2016; 18: 2577
  • 7 Sheldon RA. Green Chem. 2017; 19: 18
  • 8 Sheldon RA. Green Chem. 2016; 18: 3180
  • 9 Sneddon HF. Green Chem. 2016; 18: 582
  • 10 van Putten R.-J. van der Waal JC. de Jong E. Rasrendra CB. Heeres HJ. de Vries JG. Chem. Rev. 2013; 113: 1499
  • 11 Binder JB. Raines RT. J. Am. Chem. Soc. 2009; 131: 1979
  • 12 Bhaumik P. Dhepe PL. Catal. Rev. 2016; 58: 36
  • 13 Mariscal R. Maireles-Torres P. Ojeda M. Sádaba I. López Granados M. Energy Environ. Sci. 2016; 9: 1144
  • 14 Tradtrantip L. Sonawane ND. Namkung W. Verkman A. J. Med. Chem. 2009; 52: 6447
  • 15 Jung ME. Im GJ. J. Org. Chem. 2009; 74: 8739
  • 16 Michail K. Matzi V. Maier A. Herwig R. Greilberger J. Juan H. Kunert O. Wintersteiger R. Anal. Bioanal. Chem. 2007; 387: 2801
  • 17 Sriwilaijaroen N. Kadowaki A. Onishi Y. Gato N. Ujike M. Odagiri T. Tashiro M. Suzuki Y. Food Chem. 2011; 127: 1
  • 18 Chuda Y. Ono H. Ohnishi-Kameyama M. Matsumoto K. Nagata T. Kikuchi Y. J. Agric. Food Chem. 1999; 47: 828
  • 19 Villard R. Robert F. Blank I. Bernardinelli G. Soldo T. Hofmann T. J. Agric. Food Chem. 2003; 51: 4040
  • 20 Rosatella AA. Simeonov SP. Frade RF. M. Afonso CA. M. Green Chem. 2011; 13: 754
  • 21 Knoevenagel E. Ber. Dtsch. Chem. Ges. 1898; 31: 2596
  • 22 van Schijndel J. Canalle LA. Smid J. Meuldijk J. Open J. Phys. Chem. 2016; 6: 101
  • 23 List B. Angew. Chem. Int. Ed. 2010; 49: 1730
  • 24 van Schijndel J. Canalle LA. Molendijk D. Meuldijk J. Green Chem. Lett. Rev. 2017; 10: 404
  • 25 Typical Protocol for the Green Knoevenagel Condensation towards 3a with 10 mol% Ammonium Bicarbonate:Malonic acid (1.0 g, 10 mmol) was dissolved in furfural (1a, 0.96 g, 10 mmol), and ammonium bicarbonate (79 mg, 1.0 mmol) was subsequently added. The reaction mixture was stirred and kept for 1 h at 50 °C for complete conversion of furfural. In a total workup, the reaction mixture was dissolved in 10 mL saturated NaHCO3 solution and subsequently acidified to a pH of 2 using an aqueous 6 M HCl solution. The aqueous layer was extracted with ethyl acetate (3 × 5 mL). After drying the combined organic layers over MgSO4 the solvent was removed under reduced pressure, and the solid product was subsequently dried at 60 °C in a vacuum oven.
  • 26 Optimized Protocol for the Synthesis of Hydrofuramide (4a)A mixture of furfural (1a, 1.44 g, 15 mmol) and ammonium bicarbonate (0.79 g, 10 mmol) was brought to a temperature of 50 °C, resulting in a solid yellow-white substance in 2h. The solid was purified by suspending the obtained precipitate in 10 mL 30% (m/m) ammonia and subsequently removing the solvent by filtration.Hydrofuramide (4a)Brown solid, decomposes at 117 °C. 1H NMR (400 MHz, DMSO): δ = 8.44 (s, 2 H), 7.91 (s, 2 H), 7.65 (d, J = 0.4 Hz, 1 H), 7.11 (d, J = 3.4 Hz, 2 H), 6.70–6.62 (m, 2 H), 6.46 (dd, J = 3.1, 1.9 Hz, 1 H), 6.38 (d, J = 3.2 Hz, 1 H), 6.11 (s, 1 H). 13C NMR (101 MHz, CDCl3): δ = 152.81, 151.41, 150.61, 145.33, 142.52, 115.85, 111.90, 110.42, 107.78, 84.16. MS (ESI): m/z calcd: 268.27 g/mol; found [M + H]+: 269.Hydro 5-Methylfuramide (4b)Light brown solid, decomposes at 84 °C. 1H NMR (400 MHz, DMSO): δ = 8.29 (s, 2 H), 6.95 (d, J = 3.1 Hz, 2 H), 6.27 (d, J = 2.6 Hz, 2 H), 6.20 (d, J = 2.9 Hz, 1 H), 6.02 (d, J = 1.8 Hz, 1 H), 5.92 (s, 1 H), 2.34 (s, 6 H), 2.23 (s, 3 H).13C NMR (101 MHz, DMSO): δ = 155.94, 152.73, 151.72, 150.35, 150.34, 118.45, 109.08, 108.04, 106.87, 84.80, 13.93, 13.75. MS (ESI): m/z calcd: 310.35 g/mol; found [M + H]+: 311.Hydro 5-HMF Furamide (4c)Brown solid, decomposes at 125 °C. 1H NMR (400 MHz, DMSO): δ = 8.36 (d, J = 0.7 Hz, 2 H), 7.02 (d, J = 3.3 Hz, 2 H), 6.48 (d, J = 3.3 Hz, 2 H), 6.27 (dd, J = 12.5, 3.1 Hz, 2 H), 6.01 (s, J = 8.0 Hz, 1 H), 4.48 (s, 4 H), 4.37 (s, 2 H).13C NMR (101 MHz, DMSO): δ = 178.42, 162.63, 159.26, 155.71, 153.52, 152.19, 150.85, 150.80, 124.91, 118.05, 110.15, 109.62, 108.16, 107.96, 84.65, 56.40, 56.28, 56.11. MS (ESI): m/z calcd: 358.35 g/mol, found [M + H2O + H]+: 377.
  • 27 Dalessandro EV. Collin HP. Guimaraes LG. L. Valle MS. Pliego JR. Jr. J. Phys. Chem. B 2017; 121: 5300
  • 28 Typical Protocol for the Green Knoevenagel Condensation towards 6a with 10 mol% ammonium bicarbonate:Diethyl malonate (5a, 1.6 g, 10 mmol) was mixed with furfural (1a, 0.96 g, 10 mmol) and ammonium bicarbonate (79 mg, 1.0 mmol) was subsequently added. The reaction mixture was stirred and kept for 1 hour at 90 °C for complete conversion of furfural.The product 6a was obtained by adding 5 mL saturated brine solution to the oily product and this aqueous layer was extracted three times with ethyl acetate (3 x 5 mL). After drying the combined organic layers over MgSO4 ethyl acetate was removed under reduced pressure and the product was dried at 60 °C in a vacuum oven.
  • 29 Chatterjee M. Ishizaka T. Kawanami H. Green Chem. 2016; 18: 487
  • 30 Huang J. Zhang J. Dong Y. Gong W. J. Org. Chem. 2011; 76: 3511
  • 31 Bordwell FG. Acc. Chem. Res. 1988; 21: 456
  • 32 Perez GV. Perez AL. J. Chem. Educ. 2000; 77: 910
  • 33 Balalaie S. Nemati N. Synth. Commun. 2000; 30: 869
  • 34 Balalaie S. Bararjanian M. Hekmat S. Salehi P. Synth. Commun. 2006; 36: 2549
  • 35 Saha M. Roy S. Kumar Chaudhuri S. Bhar S. Green Chem. Lett. Rev. 2008; 1: 113
  • 36 Sonar JP. Shisodia SU. Pardeshi SD. Dokhe SA. Zine AM. Pawar SN. Thore SN. Eur. Chem. Bull. 2017; 69
  • 37 Mase N. Horibe T. Org. Lett. 2013; 15: 1854