Synthesis 2018; 50(24): 4963-4981
DOI: 10.1055/s-0037-1610223
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Indole-Dihydroisoquinoline Sulfonyl Ureas via Three-Component Reactions

Stuart E. Pearson*
a  Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK   Email: stuart.pearson@astrazeneca.com
,
Shaun M. Fillery
a  Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK   Email: stuart.pearson@astrazeneca.com
,
Kristin Goldberg
a  Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK   Email: stuart.pearson@astrazeneca.com
,
Julie E. Demeritt
b  Formerly of Oncology Innovative Medicines, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
,
Jonathan Eden
b  Formerly of Oncology Innovative Medicines, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
,
Jonathan Finlayson
b  Formerly of Oncology Innovative Medicines, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
,
Anil Patel
b  Formerly of Oncology Innovative Medicines, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
› Author Affiliations
Further Information

Publication History

Received: 14 May 2018

Accepted after revision: 04 July 2018

Publication Date:
20 August 2018 (online)


Abstract

Isoquinolines activated with sulfamoyl chlorides were reacted with indoles in a 3-component reaction to generate a library of dihydroisoquinoline derivatives. Using a differential protecting group strategy, products could be further derivatised. Synthesis of isoquinoline starting materials using several different methods is also described.

Supporting Information

 
  • References

  • 1 Merck G. Ann. Chem. Pharm. 1848; 66: 125 ; doi:10.1002/jlac.18480660121
  • 2 Goldman L. Schafer A. Solifenacin . In Goldman’s Cecil Medicine Philadelphia . 24th ed. Elsevier Saunders; Amsterdam: 2011: 343
    • 3a Venkov AP. Statkova-Abeghe SM. Donova AK. Cent. Eur. J. Chem. 2004; 2: 234
    • 3b Sheinkman A. Samoilenko GV. Klyuev NA. Zh. Obsh. Khimii 1974; 44: 1472
    • 3c Shaabani A. Soleimani E. Khavasi HR. Tetrahedron Lett. 2007; 48: 4743
    • 3d Yavari I. Ghazanfarpour-Darjani M. Sabbaghan M. Hossaini Z. Tetrahedron Lett. 2007; 48: 3749
    • 4a Sheinkman A. Khim. Geterotsikl. Soedin. 1972; 1099
    • 4b Hermange P. Dau ME. T. H. Retailleau P. Dodd RH. Org. Lett. 2009; 11: 4044
    • 4c Sheinkman AK. Deikalo AA. Khim. Geterotsikl. Soedin 1971; 1654
    • 4d Diaz JL. Miguel M. Lavilla R. J. Org. Chem. 2004; 69: 3550
    • 5a Sodeoka M. Sasamoto N. Dubs C. Hamashima Y. J. Am. Chem. Soc. 2006; 128: 14010
    • 5b Taylor MS. Tokunaga N. Jacobsen ES. Angew. Chem. Int. Ed. 2005; 44: 6700
    • 5c Zhang J.-W. Xu Z. Qing G. Shi X.-X. Leng X.-B. You S.-L. Tetrahedron 2012; 68: 5263
  • 6 Skyrpnik YG. Sidorenko LM. Samoilenko GV. Klyuev NA. Sheinkman AK. J. Org. Chem. USSR (Engl. Transl.) 1981; 902
  • 7 Skyrpnik YG. Vasil’eva NV. Lyashchuk SN. Bezrodnyi VP. Enya VI. J. Org. Chem. USSR (Engl. Transl.) 2000; 36: 577
  • 8 Chung T.-W. Hung Y.-T. Thikekar T. Paike VV. Lo FY. Tsai P.-H. Liang M.-C. Sun C.-M. ACS Comb. Sci. 2015; 17: 442
    • 9a Pomeranz C. Monatsh. Chem. 1893; 14: 116
    • 9b Fritsch P. Ber. Dtsch. Chem. Ges. 1893; 26: 419
    • 9c Hendrickson JB. Rodriguez C. J. Org. Chem. 1983; 48: 3344
    • 9d Bischler A. Napieralski B. Ber. Dtsch. Chem. Ges. 1893; 26: 1903
    • 10a Donohoe TJ. Pilgrim BS. Gatland AE. McTernan CT. Procopiou PA. Org. Lett. 2013; 15: 6190
    • 10b Ohno H. Ohta Y. Oishi S. Fujii N. Chem. Commun. 2008; 835
  • 11 Birch AJ. Jackson AH. Shannon PV. R. J. Chem. Soc., Perkin Trans. 1 1974; 2185
  • 12 Fremery MI. Fields EK. J. Org. Chem. 1964; 29: 2240
  • 13 Miller RB. Frincke JM. J. Org. Chem. 1980; 45: 5312
  • 14 Valdes C. Florentino L. Aznar F. Org. Lett. 2012; 14: 2323