Synthesis 2018; 50(22): 4383-4394
DOI: 10.1055/s-0037-1610215
paper
© Georg Thieme Verlag Stuttgart · New York

Directed Zincation or Magnesiation of 2- and 4-Pyrones and Their Derivatives

Dorothée S. Ziegler
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Lydia Klier
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Nicolas Müller
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Konstantin Karaghiosoff
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
› Author Affiliations
We would like to thank the Ludwig-Maximilians-University Munich for financial support. We thank Albemarle Corporation for the generous gift of chemicals and the SFB749 for financial support.
Further Information

Publication History

Received: 14 June 2018

Accepted after revision: 25 June 2018

Publication Date:
09 August 2018 (eFirst)

Dedicated to Professor Scott Denmark on the occasion of his 65th birthday

Abstract

A regioselective magnesiation of the 2-pyrone scaffold was developed. Magnesiation of this heterocycle by using TMPMgCl·LiCl (TMP = 2,2,6,6-tetramethylpiperidyl) followed by trapping reactions with electrophiles such as aldehydes, allylic bromides, acid chlorides, and aryl iodides provided functionalized 2-pyrones. Furthermore, methyl coumalate and 3,5-dibromo-2H-pyran-2-one were zincated by using TMPZnCl·LiCl to afford zincated heterocycles, which reacted with typical electrophiles. A second magnesiation at position C3 of the 2-pyrone scaffold was achieved by using TMPMgCl·LiCl. Also, the zincation of the 4-pyrone scaffold at position C2 is reported, leading to functionalized 4-pyrones.

Supporting Information

 
  • References

    • 1a Macias FA. Simonet AM. Pacheco PC. Barrero AF. Cabrera E. Jiménez-González D. J. Agric. Food Chem. 2000; 48: 3003
    • 1b McGlacken GP. Fairlamb IJ. S. Nat. Prod. Rep. 2005; 22: 369
    • 1c Gao H. Popescu R. Kopp B. Wang Z. Nat. Prod. Rep. 2011; 28: 953
    • 1d Ligresti A. Villano R. Allará M. Ujváry I. Di Marzo V. Pharmacol. Res. 2012; 66: 163
    • 1e Bhat ZS. Rather MA. Maqbool M. Lah HU. L. Yousuf SK. Ahmad Z. Biomed. Pharmacother. 2017; 91: 265
    • 2a Cho C.-G. Kim Y.-W. Lim Y.-K. Park J.-S. Lee H. Koo S. J. Org. Chem. 2002; 67: 290
    • 2b Zhao P. Beaudry CM. Angew. Chem. Int. Ed. 2014; 126: 10668
    • 2c Gan P. Smith MW. Braffman NR. Snyder SA. Angew. Chem. Int. Ed. 2016; 55: 3625
    • 3a Luparia M. Oliveira MT. Audisio D. Frébault F. Goddard R. Maulide N. Angew. Chem. Int. Ed. 2011; 50: 12631
    • 3b Zhuo C.-X. Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 6051
    • 3c Preindl J. Schulthoff S. Wirtz C. Lingnau J. Fürstner A. Angew. Chem. Int. Ed. 2017; 56: 7525
    • 4a Frébault F. Oliveira MT. Wöstefeld E. Maulide N. J. Org. Chem. 2010; 75: 7962
    • 4b Nolan M.-T. Pardo LM. Prendergast AM. McGlacken GP. J. Org. Chem. 2015; 80: 10904
    • 5a Grigalunas M. Wiest O. Helquist P. Org. Lett. 2016; 18: 5724
    • 5b Dobler D. Reiser O. J. Org. Chem. 2016; 81: 10357
    • 6a Mulvey E. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed. 2007; 46: 3802
    • 6b Haag B. Mosrin M. Ila H. Malakhov V. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 6c Balkenhohl M. Knochel P. SynOpen 2018; 2: 78
    • 7a Krasovskiy A. Krasovskaya V. Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 7b Balkenhohl M. Francois C. Sustac Roman D. Quinio P. Knochel P. Org. Lett. 2017; 19: 536
    • 7c Nafe J. Knochel P. Synthesis 2016; 48: 103
    • 7d Balkenhohl M. Greiner R. Makarov IS. Heinz B. Karaghiosoff K. Zipse H. Knochel P. Chem. Eur. J. 2017; 23: 13046
    • 8a Mosrin M. Bresser T. Knochel P. Org. Lett. 2009; 11: 3406
    • 8b Haas D. Mosrin M. Knochel P. Org. Lett. 2013; 15: 6162
    • 8c Shen J. Wong B. Gu C. Zhang H. Org. Lett. 2015; 17: 4678
    • 8d Castelló-Micó A. Nafe J. Higashida K. Karaghiosoff K. Gingras M. Knochel P. Org. Lett. 2017; 19: 360
    • 8e Balkenhohl M. Salgues B. Hirai T. Karaghiosoff K. Knochel P. Org. Lett. 2018; 20: 3114
    • 9a Wunderlich S. Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
    • 9b Mosrin M. Knochel P. Chem. Eur. J. 2009; 15: 1468
    • 9c Hammann JM. Haas D. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 4478
    • 9d Klier L. Aranzamendi E. Ziegler D. Nickel J. Karaghiosoff K. Carell T. Knochel P. Org. Lett. 2016; 18: 1068
    • 9e Ziegler DS. Greiner R. Lumpe H. Kqiku L. Karaghiosoff K. Knochel P. Org. Lett. 2017; 19: 5760
    • 9f Micó-Castelló A. Knochel P. Synthesis 2018; 50: 155
    • 10a Negishi E.-i. Valente LF. Kobayashi M. J. Am. Chem. Soc. 1980; 102: 3298
    • 10b Negishi E.-i. Acc. Chem. Res. 1982; 15: 340
    • 11a Farina V. Baker SR. Benigni DA. Sapino CJr. Tetrahedron Lett. 1988; 29: 5739
    • 11b Farina V. Baker SR. Benigni DA. Hauck SI. Sapino CJr. J. Org. Chem. 1990; 55: 5833
  • 12 Knochel P. Yeh MC. P. Berk SC. Talbert J. J. Org. Chem. 1988; 53: 2390
  • 13 Klier L. Bresser T. Nigst TA. Karaghiosoff K. Knochel P. J. Am. Chem. Soc. 2012; 134: 13584