Synlett 2018; 29(16): 2131-2136
DOI: 10.1055/s-0037-1610207
cluster
© Georg Thieme Verlag Stuttgart · New York

Dynamic Covalent Chemistry within Biphenyl Scaffolds: Effects from Endocyclic to Exocyclic Sulfonamides

Cailing Ni ◊
a  State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China   Email: lyou@fjirsm.ac.cn
b  University of Chinese of Academy of Sciences, Beijing 100049, P. R. of China
,
Meng Wang ◊
a  State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China   Email: lyou@fjirsm.ac.cn
,
Lei You  *
a  State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. of China   Email: lyou@fjirsm.ac.cn
b  University of Chinese of Academy of Sciences, Beijing 100049, P. R. of China
› Author Affiliations

We thank the National Natural Science Foundation of China (21672214 and 21504094), the Recruitment Program of Global Youth Experts, the Strategic Priority Research Program (XDB20000000), the Key Research Program of Frontier Sciences (QYZDB-SSW-SLH030) of the CAS, and the Natural Science Foundation of Fujian Province (2016J05060) for financial support. We also thank the CAS/SAFEA International Partnership Program for Creative Research Teams.
Further Information

Publication History

Received: 27 April 2018

Accepted after revision: 12 June 2018

Publication Date:
17 July 2018 (online)

These authors contributed equally to this work.

Published as part of the Cluster Atropisomerism

Abstract

There is unabated interest in developing new strategies for the control of atropisomers despite the rich history of atropisomerism. We recently introduced dynamic covalent reactions (DCRs) within biphenyl skeletons for the incorporation and chirality recognition of multiple classes of mononucleophiles. To expand the scope of this strategy, the sulfonamide unit was switched from an endocyclic to an exocyclic position, and the influence of the resulting DCRs on chiral induction was investigated. The intramolecular equilibrium between the open aldehyde and its cyclic hemiaminal favored the ring form, and excellent chirality transfer from the hemiaminal stereocenter to the helical twist of the biphenyl was revealed. The modulation of unique dual reactivity then allowed the realization of DCRs of a diverse set of amines and alcohols. The degree of chirality induction was further explored by employing chiral substrates, affording significant circular dichroism signals.

Supporting Information

 
  • References and Notes

    • 2a Smyth JE. Butler NM. Keller PA. Nat. Prod. Rep. 2015; 32: 1562
    • 2b Bringmann G. Gulder T. Gulder TA. M. Breuning M. Chem. Rev. 2011; 111: 563
    • 3a Catalytic Asymmetric Synthesis . Ojima I. Wiley; New York: 2000. 2nd ed.
    • 3b Hartwig JF. Synlett 2006; 1283
    • 3c Roseblade SJ. Pfaltz A. Acc. Chem. Res. 2007; 40: 1402
    • 3d Verendel JJ. Pàmies O. Diéguez M. Andersson PG. Chem. Rev. 2014; 114: 2130
    • 3e Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2017; 117: 10608
    • 4a Clayden J. Moran WJ. Edwards PJ. LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
    • 4b Zask A. Murphy J. Ellestad GA. Chirality 2013; 25: 265
    • 5a Liu M. Zhang L. Wang T. Chem. Rev. 2015; 115: 7304
    • 5b Chen L.-J. Yang H.-B. Shionoya M. Chem. Soc. Rev. 2017; 46: 2555
    • 5c Roberts DA. Pilgrim BS. Nitschke JR. Chem. Soc. Rev. 2018; 47: 626
    • 6a Clayden J. Johnson P. Pink JH. Helliwell M. J. Org. Chem. 2000; 65: 7033
    • 6b Meyers AI. Nelson TD. Moorlag H. Rawson DJ. Meier A. Tetrahedron 2004; 60: 4459
    • 6c Fu W. Tang W. ACS Catal. 2016; 6: 4814
    • 6d Storch G. Trapp O. Nat. Chem. 2017; 9: 179
    • 7a Aparicio F. Nieto-Ortega B. Nájera F. Ramirez FJ. López Navarrete JT. Casado J. Sánchez L. Angew. Chem. Int. Ed. 2014; 53: 1373
    • 7b Wang W. Shaller AD. Li AD. Q. J. Am. Chem. Soc. 2008; 130: 8271
    • 7c Meng W. Clegg JK. Thoburn JD. Nitschke JR. J. Am. Chem. Soc. 2011; 133: 13652
    • 7d Liu TF. Liu Y. Xuan WM. Cui Y. Angew. Chem. Int. Ed. 2010; 49: 4121
    • 7e Jędrzejewska H. Szumna A. Chem. Rev. 2017; 117: 4863
    • 7f Barendt TA. Ferreira L. Marques I. Félix V. Beer PD. J. Am. Chem. Soc. 2017; 139: 9026
    • 8a Zhang Q.-C. Wu F.-T. Hao H.-M. Xu H. Zhao H.-X. Long L.-S. Huang R.-B. Zheng L.-S. Angew. Chem. Int. Ed. 2013; 52: 12602
    • 8b Rushton GT. Vik EC. Burns WG. Rasberry RD. Shimizu KD. Chem. Commun. 2017; 53: 12469
    • 9a Collins BS. L. Kistemaker JC. M. Otten E. Feringa BL. Nat. Chem. 2016; 8: 860
    • 9b Yamamoto S. Iida H. Yashima E. Angew. Chem. Int. Ed. 2013; 52: 6849
    • 9c Haberhauer G. Angew. Chem. Int. Ed. 2010; 49: 9286
    • 10a Knipe PC. Thompson S. Hamilton AD. Chem. Sci. 2015; 6: 1630
    • 10b Petitjean A. Khoury RG. Kyritsakas N. Lehn J.-M. J. Am. Chem. Soc. 2004; 126: 6637
    • 10c Reichert S. Breit B. Org. Lett. 2007; 9: 899
    • 10d Wang H. Bisoyi HK. Wang L. Urbas AM. Bunning TJ. Li Q. Angew. Chem. Int. Ed. 2018; 57: 1627
    • 11a Liu J. Su H. Meng L. Zhao Y. Deng C. Ng JC. Y. Lu P. Faisal M. Lam JW. Y. Huang X. Wu H. Wong KS. Tang BZ. Chem. Sci. 2012; 3: 2737
    • 11b Zhang H. Li H. Wang J. Sun JZ. Qin A. Tang BZ. J. Mater. Chem. C 2015; 3: 5162
    • 11c Wang L. Dong H. Li Y. Liu R. Wang Y.-F. Bisoyi HK. Sun L.-D. Yan C.-H. Li Q. Adv. Mater. (Weinheim, Ger.) 2015; 27: 2065
    • 12a Lehn J.-M. Chem. Soc. Rev. 2007; 36: 151
    • 12b Jin Y. Yu C. Denman RJ. Zhang W. J. Chem. Soc. Rev. 2013; 42: 6634
    • 12c Ji Q. Lirag RC. Miljanić O. Š. Chem. Soc. Rev. 2014; 43: 1873
    • 12d Sun X. James TD. Chem. Rev. 2015; 115: 8001
    • 12e Wilson A. Gasparini G. Matile S. Chem. Soc. Rev. 2014; 43: 1948
    • 13a Li J. Nowak P. Otto S. J. Am. Chem. Soc. 2013; 135: 9222
    • 13b Liu Y. Lehn J.-M. Hirsch AK. H. Acc. Chem. Res. 2017; 50: 376
    • 13c Zhang G. Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
    • 13d Wang W. Wang Y.-X. Yang H.-B. Chem. Soc. Rev. 2016; 45: 2656
    • 13e Reuther JF. Dees JL. Kolesnichenko IV. Hernandez ET. Ukraintsev DV. Guduru R. Whiteley M. Anslyn EV. Nat. Chem. 2018; 10: 45
    • 14a Kay ER. Chem. Eur. J. 2016; 22: 10706
    • 14b Deng R. Derry MJ. Mable CJ. Ning Y. Armes SP. J. Am. Chem. Soc. 2017; 139: 7616
    • 14c della Sala F. Kay ER. Angew. Chem. Int. Ed. 2015; 54: 4187
    • 14d Whittaker DE. Mahon CS. Fulton DA. Angew. Chem. Int. Ed. 2013; 52: 956
    • 15a You L. Zha D. Anslyn EV. Chem. Rev. 2015; 115: 7840
    • 15b Sun X. James TD. Anslyn EV. J. Am. Chem. Soc. 2018; 140: 2348
    • 15c Schaufelberger F. Ramstrom O. J. Am. Chem. Soc. 2016; 138: 7836
    • 15d Dirksen A. Dirksen S. Hackeng TM. Dawson PE. J. Am. Chem. Soc. 2006; 128: 15602
    • 15e Karmakar S. Harcourt EM. Hewings DS. Lovejoy AF. Kurtz DM. Ehrenschwender T. Barandun LJ. Roost C. Alizadeh AA. Kool ET. Nat. Chem. 2015; 7: 752
    • 15f Liu W.-X. Zhang C. Zhang H. Zhao N. Yu Z.-X. Xu J. J. Am. Chem. Soc. 2017; 139: 8678
    • 16a Mahon CS. McGurk CJ. Watson SM. D. Fascione MA. Sakonsinsiri C. Turnbull WB. Fulton DA. Angew. Chem. Int. Ed. 2017; 56: 12913
    • 16b Wei T. Jung JH. Scott TF. J. Am. Chem. Soc. 2015; 137: 16196
    • 16c Cal PM. Vicente JB. Pires E. Coelho AV. Veiros LF. Cordeiro C. Gois PM. P. J. Am. Chem. Soc. 2012; 134: 10299
    • 17a Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471
    • 17b Wang Q. van Gemmeren M. List B. Angew. Chem. Int. Ed. 2014; 53: 13592
    • 17c Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 17d Miller SJ. Acc. Chem. Res. 2004; 37: 601
    • 17e Raynal M. Ballester P. Vidal-Ferran A. van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1734
    • 17f MacMillan DW. C. Nature 2008; 455: 304
    • 18a Osowska K. Miljanić O. Š. J. Am. Chem. Soc. 2011; 133: 724
    • 18b Hsu CW. Miljanić OŠ. Angew. Chem. Int. Ed. 2015; 54: 2219
    • 18c Belowich ME. Stoddart JF. Chem. Soc. Rev. 2012; 41: 2003
    • 18d Kulchat S. Chaur MN. Lehn J.-M. Chem. Eur. J. 2017; 23: 11108
    • 19a Zhou Y. Ye H. You L. J. Org. Chem. 2015; 80: 2627
    • 19b Caprice K. Pupier M. Kruve A. Schalley CA. Chem. Sci. 2018; 9: 1317
    • 19c Ren YL. You L. J. Am. Chem. Soc. 2015; 137: 14220
    • 20a Reinert S. Mohr GJ. Chem. Commun. 2008; 2272
    • 20b Mertz E. Beil JB. Zimmerman SC. Org. Lett. 2003; 5: 3127
    • 20c Wu X. Busschaert N. Wells NJ. Jiang Y.-B. Gale PA. J. Am. Chem. Soc. 2015; 137: 1476
    • 21a You L. Berman JS. Anslyn EV. Nat. Chem. 2011; 3: 943
    • 21b Mohr GJ. Anal. Bioanal. Chem. 2006; 386: 1201
    • 21c Matsui M. Yamada K. Funabiki K. Tetrahedron 2005; 61: 4671
    • 21d Li X. Burrell CE. Staples RJ. Borhan B. J. Am. Chem. Soc. 2012; 134: 9026
  • 22 Ni C. Zha D. Ye H. Hai Y. Zhou Y. Anslyn EV. You L. Angew. Chem. Int. Ed. 2018; 57: 1300
  • 23 6-Mesyl-6,7-dihydro-5H-dibenzo[c,e]azepin-5-ol (2) Under an argon atmosphere, N-(2-bromobenzyl)methanesulfonamide (0.53 g, 2.0 mmol), (2-formylphenyl)boronic acid (0.46 g, 3.0 mmol), and Pd(dppt)Cl2 (60 mg) were dissolved in 1,4-dioxane (20 mL). A 1 M aq solution of K3PO4 (6.0 mL) was added, and the mixture was stirred at 86 °C overnight. The mixture was then cooled to r.t. and brine (15 mL) was added. The mixture was extracted with EtOAc (2 × 30 mL), and the organic layers were combined, washed with water, dried (Na2SO4), filtered, concentrated, and purified by column chromatography [silica gel, PE–EtOAc (4:1)] to give a white solid; yield: 0.51 g (88%); mp 92–94 °C. 1H NMR (CD3CN): δ = 9.72 (s, 1 H, open form), 8.01 (d, J = 7.6 Hz, 1 H, open form), 7.73 (t, J = 7.6 Hz, 1 H, open form), 7.37–7.63 (m, 61 H, open form 5 H; ring form 56 H), 7.25 (d, J = 7.6, 1 H, open form), 6.29 (d, J = 4.8 Hz, 7 H, ring form), 5.39 (br s, 1 H, open form), 4.58 (d, J = 14.4 Hz, 7 H, ring form), 4.00 (d, J = 6.0 Hz, 2 H, open form), 3.90 (d, J = 14.4 Hz, 7 H, ring form), 3.71 (d, J = 4.8 Hz, 7 H, ring form), 2.98 (s, 21 H, ring form), 2.68 (s, 3 H, open form). 13C NMR (CD3CN): δ = 191.7, 143.5, 140.8, 139.7, 138.5, 137.6, 136.81, 135.6, 134.9, 134.1, 133.7, 131.1, 130.6, 129.8, 129.5, 129.0, 128.7, 128.7, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7, 127.4, 83.3, 47.5, 44.5, 41.1, 39.1. ESI-HRMS: m/z [M + Na]+ calcd for C15H15NNaO3S: 312.0670; found: 312.0667.
  • 24 CCDC 1840008 and 1840009 contain the supplementary crystallographic data for compounds 4 and 10, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    • 25a Wu P. Nielsen TE. Chem. Rev. 2017; 117: 7811
    • 25b Hopman JC. P. van den Berg E. Ollero Ollero L. Hiemstra H. Speckamp WN. Tetrahedron Lett. 1995; 36: 4315
    • 25c Fan X. Lv H. Guan Y.-H. Zhu H.-B. Cui X.-M. Guo K. Chem. Commun. 2014; 50: 4119