Synthesis 2018; 50(22): 4490-4500
DOI: 10.1055/s-0037-1610199
paper
© Georg Thieme Verlag Stuttgart · New York

Unconventional Rose Odorants: Serendipitous Discovery and Unique Olfactory Properties of 2,2-Bis(prenyl)-3-oxobutyronitrile and Its Derivatives

Nicole Hauser*
a   ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland   Email: nicole.hauser@org.chem.ethz.ch   Email: carreira@org.chem.ethz.ch
,
b   Givaudan Fragrances S&T, Ingredients Research, Überlandstrasse 138, 8600 Dübendorf, Switzerland   Email: philip.kraft@givaudan.com
,
a   ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland   Email: nicole.hauser@org.chem.ethz.ch   Email: carreira@org.chem.ethz.ch
› Author Affiliations
Further Information

Publication History

Received: 14 June 2018

Accepted: 14 June 2018

Publication Date:
26 June 2018 (online)


Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday

Abstract

2,2-Bis(3-methylbut-2-enyl)-3-oxobutanenitrile [2,2-bis(prenyl)-3-oxobutyronitrile], an unusual bifunctional nitrile odorant with a fruity rosy, green odor was found to exhibit surprising differences in its detection thresholds (0.25 ng/L air for hyperosmics; 19 ng/L air for hyposmics) and perceived odor characters. To investigate this remarkable phenomenon, 13 derivatives of 2,2-bis(3-methylbut-2-enyl)-3-oxobutanenitrile were synthesized by either monoalkylation of 3-oxo-2-phenylbutanenitrile, or by dialkylation of sodium 1-cyano-2-oxopropan-1-ide or methyl or ethyl cyanoacetate, or by direct derivatization of 2,2-bis(3-methylbut-2-enyl)-3-oxobutanenitrile via its vinyl triflate and Negishi cross coupling. These systematic permutations of the substitution pattern allowed some insight to be gained into the underlying structure–odor relationships and the construction of a simple olfactophore model, albeit no final conclusion could be drawn as to whether the nitrile or carbonyl function acts as the prime osmophore of the bifunctional compounds. Depending on slight genetic variations and the corresponding differences in the receptor morphology both can engage in H-bond interactions with the olfactory receptors, which might explain the observed largely diverging sensitivities. Methyl 2-cyano-2,2-bis(3-methylbut-2-enyl)acetate with a uniform odor threshold of 0.38 ng/L air turned out to be the most interesting floral, rosy odorant of this study, followed by 3-methyl-2,2-bis(3-methylbut-2-enyl)but-3-enenitrile with only a nitrile function and varying odor thresholds (0.40 ng/L air vs. 125 ng/L air).

 
  • References

  • 1 Jozitsch J. Zh. Russ. Fiz.-Khim. O-va 1897; 29: 111 ; Chem. Zentralbl. 1897, 68, 1015
  • 2 Schmidt T. Draber W. Behrenz W. DE 2644590, 1978 ; Chem. Abstr. 1978, 89, 23992.
  • 3 Pesaro M. WO 9716512, 1997 ; Chem. Abstr. 1997, 127, 23595
  • 4 Flachsmann F. Bachmann J.-P. WO 2006133592, 2006 ; Chem. Abstr. 2006, 146, 86956.
    • 5a Narula AP. S. In Perspectives in Flavor and Fragrance Research . Kraft P. Swift KA. D. Verlag Helvetica Chimica Acta; Zürich and Wiley-VCH, Weinheim: 2005; 163
    • 5b Narula AP. S. Chem. Biodiversity 2004; 1: 1992
  • 6 Gonzenbach HU. Ochsner PA. EP 0024306, 1981
  • 7 Gebauer H. DE 3328422, 1985 ; Chem. Abstr. 1985, 103, 53705.
  • 8 Romanov-Michailidis F. Besnard C. Alexakis A. Org. Lett. 2012; 14: 4906
  • 9 Yu H. Moore ML. Erhard K. Hardwicke MA. Lin H. Luengo JI. McSurdy-Freed J. Plant R. Qu J. Raha K. Rominger CM. Schaber MD. Spengler MD. Rivero RA. ACS Med. Chem. Lett. 2013; 4: 230
  • 10 Grenning AJ. Tunge JA. J. Am. Chem. Soc. 2011; 133: 14785
  • 11 Zhu S. Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
  • 12 Hanson SS. Doni E. Traboulsee KT. Coulthard G. Murphy JA. Dyker CA. Angew. Chem. Int. Ed. 2015; 54: 11236

    • Examples for nucleophile induced retro-Claisen reactions:
    • 13a Roshchupkina GI. Gatilov YV. Rybalova TV. Reznikov VA. Eur. J. Org. Chem. 2004; 1765
    • 13b Xie F. Yan F. Chen M. Zhang M. RSC Adv. 2014; 4: 29502
    • 13c Yang D. Zhou Y. Xue N. Qu J. J. Org. Chem. 2013; 78: 4171
  • 14 Nobel lecture: Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 15a Marshall JA. Zou D. Tetrahedron Lett. 2000; 41: 1347
    • 15b Marshall JA. Van Devender EA. J. Org. Chem. 2001; 66: 8037
    • 15c Jung YC. Yoon CH. Turos E. Yoo KS. Jung KW. J. Org. Chem. 2007; 72: 10114
    • 15d Whelligan DK. Solanki S. Taylor D. Thomson DW. Cheung K.-MJ. Boxall K. Mas-Droux C. Barillari C. Burns S. Grummitt CG. Collins I. van Montfort RL. M. Aherne GW. Bayliss R. Hoelder S. J. Med. Chem. 2010; 53: 7682
    • 16a Comins DL. Dehghani A. Tetrahedron Lett. 1992; 33: 6299
    • 16b Smith AB. III. Fox RJ. Vanecko JA. Org. Lett. 2005; 7: 3099
    • 17a Leung GY. C. Li H. Toh Q.-Y. Ng AM.-Y. Sum RJ. Bandwo JE. Chen DY.-K. Eur. J. Org. Chem. 2011; 183
    • 17b Hog DT. Mayer P. Trauner D. J. Org. Chem. 2012; 77: 5838
    • 17c Hog DT. Huber FM. E. Jiménez-Osés G. Mayer P. Houk KN. Trauner D. Chem.–Eur. J. 2015; 21: 13646
  • 18 Gramstad T. Spectrochim. Acta 1963; 19: 497
  • 19 Andrews KG. Frampton CS. Spivey AC. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2013; 1207
  • 20 De Jesus Cortez F. Lapointe D. Hamlin AM. Simmons EM. Sargpong R. Tetrahedron 2013; 69: 5665
  • 21 Dess DB. Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
    • 22a Walsh AD. Trans. Faraday Soc. 1949; 45: 179 ; and references cited therein
    • 22b de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
    • 23a Talele TT. J. Med. Chem. 2016; 59: 8712

    • Recent example for the application of cyclopropanes as olefin isosteres in fragrance chemistry:
    • 23b Jordi S. Kraft P. Helv. Chim. Acta 2018; 6: e1800048
  • 24 Lindlar H. Helv. Chim. Acta 1952; 35: 446
  • 25 Maddess ML. Lautens M. Org. Lett. 2005; 7: 3557
    • 26a Hashmi AS. K. Haeffner T. Rudolph M. Rominger F. Chem.–Eur. J. 2011; 17: 8195
    • 26b Oediger H. Moeller F. Justus Liebigs Ann. Chem. 1976; 348
  • 27 Sturm W. Parfuem. Kosmet. 1974; 55: 351
  • 28 Discovery Studio, v. 18.1.100.18065, Dassault Systèmes Biovia Corp., San Diego, CA 92121 USA, 2017. For more information, see http://accelrys.com/products/collaborative-science/biovia-discovery-studio/.
  • 29 Molecular Operating Environment (MOE), release 2016.08.02, Chemical Computing Group, Montreal, Quebec, Canada H3A 2R7, 2014. For more information, see http://www.chemcomp.com/.