Synlett 2018; 29(13): 1776-1780
DOI: 10.1055/s-0037-1610183
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Three-Component Synthesis of Bispyrazole-thiazole-pyran-2-one Heterocyclic Hybrids

Aicha Saidoun
a  Laboratoire de Chimie Organique Appliquée, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, BP 32, El-Alia Bab-Ezzouar, 16111 Alger, Algeria   Email: [email protected]
,
Leila Boukenna
a  Laboratoire de Chimie Organique Appliquée, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, BP 32, El-Alia Bab-Ezzouar, 16111 Alger, Algeria   Email: [email protected]
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Bou-Ismail, 42004 Tipaza, Algeria
,
Yahia Rachedi*
a  Laboratoire de Chimie Organique Appliquée, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, BP 32, El-Alia Bab-Ezzouar, 16111 Alger, Algeria   Email: [email protected]
,
Oualid Talhi*
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Bou-Ismail, 42004 Tipaza, Algeria
c  QOPNA & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal   Email: [email protected]   Email: [email protected]
,
Yacine Laichi
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Bou-Ismail, 42004 Tipaza, Algeria
,
Najet Lemouari
b  Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Bou-Ismail, 42004 Tipaza, Algeria
,
Mohamed Trari
d  Laboratoire de Stockage et de Valorisation des Energies Renouvelables, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène BP 32, El-Alia Bab-Ezzouar, 16111 Alger, Algeria
,
Khaldoun Bachari
c  QOPNA & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal   Email: [email protected]   Email: [email protected]
,
c  QOPNA & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal   Email: [email protected]   Email: [email protected]
› Author Affiliations
Thanks are due to the University of Aveiro and FCT/MEC for financial support to the QOPNA research project (FCT UID/QUI/00062/2013), ­financed by national funds and, when appropriate, co-financed by FEDER under the PT2020 Partnership Agreement, as well as to the Portuguese NMR Network. We would also like to thank FCT/MEC and the General Directorate for Scientific Research and Technological ­Development – DGRSDT of Algeria and the Agence Thématique de ­Recherche en Sciences et Technologie ATRST for approving the co-­financed bilateral project PT-DZ/0005.
Further Information

Publication History

Received: 20 April 2018

Accepted after revision: 16 May 2018

Publication Date:
25 June 2018 (online)


Abstract

A new series of some interesting bispyrazole-thiazole-pyran-2-one heterocyclic hybrids has been efficiently synthesized via a one-pot catalyst-free three-component reaction of α-bromoacetylated pyran-2-one derivatives, thiosemicarbazide, and polysubstituted-1-(1H-pyrazol-4-yl)butane-1,3-diones. This multicomponent procedure has been advantageously applied to prepare a structural diversity of hetero­cyclic hybrids characterized by extensive 1D and 2D NMR spectroscopic studies.

Supporting Information

 
  • References and Notes

    • 1a Spino C. Dodier MS. Sotheeswaran S. Bioorg. Med. Chem. Lett. 1998; 8: 3475
    • 1b Basile A. Sorbo S. Spadaro V. Molecules 2009; 14: 939
    • 1c McGlacken GP. Fairlamb IJ. S. Nat. Prod. 2005; 22: 36
    • 1d Lee JS. Mar. Drugs 2015; 13: 1581
    • 2a Egan D. O'Kennedy E. Moran E. Cox D. Prosser E. Thornes RD. Drug Metab. Rev. 1990; 22: 503
    • 2b Hatem AA. Tilal E. Abdullah A. Mohamed IA. Khalid AA. Abdul-Rahman MA. Eur. J. Med. Chem. 2013; 70: 358
    • 2c Starks CM. Russell BW. Norman VL. Rice SM. O’Neil-Johnson M. Lawrence JA. Eldridge GR. Phytochemistry 2014; 98: 216
    • 2d Behrami A. Dobroshi F. J. Chem. Pharm. Res. 2015; 7: 1087
    • 2e Ratnakar RK. Rao SP. Jitender DG. Poornachandra Y. Ganesh KC. Bioorg. Med. Chem. Lett. 2014; 24: 1661
    • 2f Jun M. Bacay AF. Moyer J. Webb A. Carrico-Moniz D. Bioorg. Med. Chem. Lett. 2014; 24: 4654
    • 2g Talhi O. Schnekenburger M. Panning J. Pinto DG. C. Fernandes JA. Paz FA. A. Jacob C. Diederich M. Silva AM. S. Bioorg. Med. Chem. 2014; 22: 3008
    • 2h Veselinović JB. Matejić JS. Veselinović AM. D. Sokolović D. Biol. Nyssana 2016; 7: 167
    • 3a Fahr E. Pharm. Ztg. 1982; 127: 163
    • 3b Altomare C. Perrone G. Zonno MC. Evidente A. Pengue R. Fanti F. Polonelli L. J. Nat. Prod. 2000; 63: 1131
    • 3c Altomare C. Pengue R. Favilla M. Evidente A. Visconti A. J. Agric. Food Chem. 2004; 52: 2997
    • 3d McGlacken GP. Fairlamb I. J. Nat. Prod. Rep. 2005; 22: 369
    • 3e Aiqun L. Xiaoming L. Yuchun F. Tianjiao Z. Qianqun G. Weiming Z. J. Antibiot. 2008; 61: 245
    • 4a Lee S. Park SB. Org. Lett. 2009; 11: 5214
    • 4b Orrego-Hernández J. Cobo J. Portilla J. Eur. J. Org. Chem. 2015; 5064
    • 5a Nasr MN. A. Said SA. Arch. Pharm. 2003; 336: 551
    • 5b Ahasan NB. Rabiul MI. Bangladesh J. Pharm. 2007; 2: 81
    • 5c Shankaraiah N. Devaiah V. Reddy KL. Juvekar A. Sen S. Kurian N. Zingde S. Bioorg. Med. Chem. Lett. 2008; 18: 14681
    • 5d Nadia RM. Nahed YK. Amin FF. Ahmed AE. Der Pharma Chemica 2010; 2: 400
    • 5e Santhosh RM. Sravanthi S. Manjula A. Vittal RaoB. Madhava RB. Sridhar B. Bioorg. Med. Chem. Lett. 2012; 22: 5272
    • 6a Gupta P. Gupta JK. Halve AK. Int. J. Pharm. Sci. Res. 2015; 6: 2291
    • 6b Yu-Ying H. Kimiyoshi K. Hiroyuki T. Masayuki K. Fung FW. Tetrahedron Lett. 2011; 52: 3786
    • 6c Jania DH. Patela HS. Kehariab H. Modic CK. Appl. Organomet. Chem. 2010; 24: 99
    • 7a Sugiura S. Ohno S. Ohtani O. Izumi K. Kitamikado T. Asai H. Kato K. J. Med. Chem. 1977; 20: 80
    • 7b Sakya SM. Rast B. Tetrahedron Lett. 2003; 44: 7629
    • 8a Siddiqui N. Arhad MF. Waquar A. Shamsher AM. Int. J. Pharm. Sci. Drug. Res. 2009; 1: 136
    • 8b Patt WC. Hamilton HW. Taylor MD. Ryan MJ. Taylor DG. J. Connolly CJ. C. Doherty AM. Klutchko SR. Sircar I. Steinbaugh BA. Batley BL. Painchaud CA. Rapundalo ST. Michniewicz BM. Olson SC. J. J. Med. Chem. 1992; 35: 2562
    • 8c Barreca ML. Balzarini J. Chimirri A. De Clercq D. De Luca L. Holtje HD. Holtje M. Monforte AM. Monforte P. Pannecouque C. Rao A. Zappala MJ. J. Med. Chem. 2002; 45: 5410
    • 8d Dinkar M. Chandewar AV. Mahendra RS. Der Chem. Sinica 2011; 2: 137
    • 8e Nepali K. Sharma S. Sharma M. Bedi PM.S. Dhar KL. Eur. J. Med. Chem. 2014; 77: 422
    • 9a Ben Mohamed S. Rachedi Y. Hamdi M. Le Bideau F. Dejean C. Dumas F. Eur. J. Org. Chem. 2016; 2628
    • 9b Bouherou H. Saidoun A. Abderrahmani A. Abdellaziz L. Rachedi Y. Dumas F. Demenceau A. Molecules 2017; 2: 57
    • 10a Rachedi Y. Hamdi M. Speziale V. Synth. Commun. 1989; 19: 3427
    • 10b Aït-baziz N. Rachedi Y. Chemat F. Hamdi M. Asian J. Chem. 2008; 4: 2610
  • 11 Aït-Baziz N. Rachedi Y. Silva AM. S. Arkivoc 2010; (10) : 86
  • 12 Rachedi Y. Hamdi M. Sakellariou R. Spesiale V. Synth. Commun. 1991; 21: 1189
    • 13a Gelin S. Chantegrel B. Nadi A. J. Org. Chem. 1983; 48: 4078
    • 13b Bendaas A. Hamdi M. Sellier N. J. Heterocycl. Chem. 1999; 36: 1291
    • 14a Siddiqui N. Arshad M. Khan S. Acta Pol. Pharm. Drug Res. 2009; 66: 1617
    • 14b Hikem-Oukacha D. Rachedi Y. Hamdi M. Silva AM. S. J. Heterocycl. Chem. 2011; 48: 31
  • 15 General Procedure for the Synthesis of Bispyrazole-thiazole-pyran-2-one Hybrids 13a–d, 14, 15a-c, 15e and 16An equimolar mixture of the appropriate 3-(2-bromoacetyl)-pyran-2-one 10 or 12 (1 mmol), thiosemicarbazide 11 (91 mg, 1 mmol), and diketo-phenylpyrazoles (6ae or 9, 1 mmol) was heated to reflux in absolute ethanol (10 mL) with vigorous stirring for 30–45 min. After completion of the reaction as indicated by TLC (using a 3:1 mixture of CHCl3/EtOH as eluent), the products were collected by filtration and then washed with hot ethanol to afford pure products.
  • 16 3-{2-[3′-(4-Chlorophenethyl)-5′-hydroxy-5-methyl-1′-phenyl-1′H,2H-(3,4′-bispyrazol)-2-yl]thiazol-4-yl}-4-hydroxy-6-methyl-2H-pyran-2-one (13b)C30H24ClN5O4S, white solid, 0.50 g (85%), mp 299–301 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 2.21 (s, 3 H, 6-CH 3), 2.32 (s, 3 H, 5b-CH3), 2.76 (br s, 4 H, H-1c and H-2c), 5.97 (s, 1 H, H-5), 6.40 (s, 1 H, H-4b), 7.00 (d, J = 8.2 Hz, 2 H, H-2′′′,6′′′), 7.08 (d, J = 8.2 Hz, 2 H, H-3′′′,5′′′), 7.28–7.31 (m, 1 H, H-4′′), 7.45–7.49 (m, 2 H, H-3′′,5′′), 7.64–7.66 (m, 2 H, H-2′′,6′′), 7.90 (s, 1 H, H-5a), 11.53 (s, 1 H, 5′-OH), 12.53 (s, 1 H, 4-OH) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 13.8 (5b-CH3), 19.8 (6-CH3), 28.4 (C-1c), 33.2 (C-2c), 91.5 (C-4′), 94.5 (C-3), 101.1 (C-5), 111.5 (C-5a), 113.6 (C-4b), 122.8 (C-2′′,6′′), 126.5 (C-4′′), 128.2 (C-3′′′,5′′′), 129.2 (C-3′′,5′′), 130.4 (C-2′′′,6′′′), 130.8 (C-4′′′), 135.3 (C-3b), 138.8 (C-1′′), 140.3 (C-1′′′), 144.4 (C-4a), 149.7 (C-3′), 152.4 (C-5b), 160.6 (C-2a), 161.8 (C-2), 162.9 (C-6), 165.1 (C-5′), 168.3 (C-4) ppm. HRMS-ESI+: m/z calcd for [C30H24ClN5O4S + H]+: 586.1310; found: 586.1313.
  • 17 4-Hydroxy-3-{2-[5′-hydroxy-3′,5-dimethyl-1′-phenyl-1′H,2H-(3,4′-bispyrazol)-2-yl]thiazol-4-yl}-6-methyl-2H-pyran-2-one (14)C23H19N5O4S, white solid, 0.44 g (95%), mp 235–237 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 2.07 (s, 3 H, 3′-CH3), 2.20 (s, 3 H, 6-CH3), 2.32 (s, 3 H, 5b-CH3), 6.01 (s, 1 H, H-5), 6.49 (s, 1 H, H-4b), 7.26–7.30 (m, 1 H, H-4′′), 7.44–7.48 (m, 2 H, H-3′′,5′′), 7.66–7.68 (m, 2 H, H-2′′,6′′), 7.94 (s, 1 H, H-5a), 11.55 (s, 1 H, 5-OH), 12.74 (s, 1 H, 4-OH) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 13.8 (5b-CH3and 3′-CH3), 19.8 (6-CH3), 91.8 (C-4′), 94.6 (C-3), 101.1 (C-5), 111.8 (C-5a), 113.2 (C-4b), 122.5 (C-2′′,6′′), 126.2 (C-4′′), 129.2 (C-3′′,5′′), 135.7 (C-3b), 138.9 (C-1′′), 144.4 (C-4a), 147.1 (C-3′), 152.5 (C-5b), 160.7 (C-2a), 161.8 (C-2), 162.9 (C-6), 165.3 (C-5′), 168.5 (C-4) ppm. HRMS-ESI+: m/z calcd for [C23H19N5O4S + H]+: 462.1231; found: 462.1230.
  • 18 3-{2-[5′-Hydroxy-3′-(4-methoxyphenethyl)-5-methyl-1′-phenyl-1′H,2H-(3,4′-bispyrazol)-2-yl]thiazol-4-yl}-2H-chromen-2-one (15e)C34H27N5O4S, white solid, 0.36 g (60%), mp 265–267 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 2.34 (s, 3 H, 5b-CH3), 2.71 (br s, 4 H, H-1c and H-2c), 3.51 (s, 3 H, 4′′′-OCH3), 6.42 (br s, 2 H, H-5 and H-4b), 6.56 (d, J = 8.5 Hz, 2 H, H-3′′′,5′′′), 6.91 (d, J = 8.4 Hz, H-2′′′,6′′′), 7.06–7.09 (m, 1 H, H-6), 7.28–7.32 (m, 1 H, H-4′′), 7.38–7.40 (m, 1 H, H-8), 7.45–7.49 (m, 2 H, H-3′′,5′′), 7.53–7.57 (m, 1 H, H-7), 7.86–7.88 (m, 2 H, H-2′′,6′′), 7.96 (s, 1 H, H-4), 8.09 (s, 1 H, H-5a), 11.68 (s, 1 H, 5′-OH) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 13.9 (5b-CH3), 29.7 (C-1c), 33.2 (C-2c), 55.1 (4′′′-OCH3), 92.2 (C-4′), 112.8 (C-4b), 113.8 (C-3′′′,5′′′), 116.4 (C-8), 116.8 (C-5a), 119.1 (C-4a), 120.7 (C-3), 121.2 (C-2′′,6′′), 124.9 (C-6), 125.8 (C-4′′), 128.5 (C-5), 129.5 (C-2′′′,6′′′), 129.6 (C-3′′,5′′), 132.3 (C-7), 133.5 (C-1′′′), 135.3 (C-3b), 139.3 (C-4), 139.4 (C-1′′), 144.8 (C-4a), 150.9 (C-3′), 151.7 (C-5b), 152.8 (C-8a), 157.7 (C-4′′′), 159.0 (C-2), 160.3 (C-2a), 161.7 (C-5′) ppm. HRMS-ESI+: m/z calcd for [C34H27N5O4S + H]+: 602.1857; found: 602.1858.
  • 19 3-{2-[5′-Hydroxy-3′,5-dimethyl-1′-phenyl-1′H,2H-(3,4′-bispyrazol)-2-yl]thiazol-4-yl}-2H-chromen-2-one (16)C26H19N5O3S, white solid, 0.35 g (72%), mp 248–250 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 2.09 (s, 3 H, 3′-CH3), 2.34 (s, 3 H, 5b-CH3), 6.42 (br s, 1 H, H-5), 6.50 (s, 1 H, H-4b), 7.06–7.10 (m, 1 H, H-6), 7.32 (s, 1 H, H-4′′), 7.37–7.39 (m, 1 H, H-8), 7.47–751 (m, 2 H, H-3′′,5′′), 7.52–7.56 (m, 1 H, H-7), 7.89–7.91 (m, 2 H, H-2′′,6′′), 8.06 (s, 1 H, H-4), 8.11 (s, 1 H, H-5a), 11.72 (s, 1 H, 5′-OH) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 13.8 (5b-CH3and 3′-CH3), 91.9 (C-4′), 112.7 (C-4b), 116.4 (C-8), 116.9 (C-5a), 119.1 (C-4a), 120.8 (C-3), 121.1 (C-2′′,6′′), 124.9 (C-6), 125.9 (C-4′′), 128.4 (C-5), 129.7 (C-3′′,5′′), 132.4 (C-7), 135.4 (C-3b), 139.2 (C-4), 139.5 (C-1′′), 144.8 (C-4a), 149.3 (C-3′), 151.7 (C-5b), 152.8 (C-8a), 159.0 (C-2), 160.60 (C-2a), 162.0 (C-5′) ppm. HRMS-ESI+: m/z calcd for [C26H19N5O3S + H]+: 482.1281; found: 482.1274.