CC BY ND NC 4.0 · SynOpen 2018; 02(02): 0192-0199
DOI: 10.1055/s-0037-1610144
paper
Copyright with the author

Enzyme Immobilization in Polymerized Ionic Liquids-based Hydrogels for Active and Reusable Biocatalysts

A. Grollmisch
Department of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
,
U. Kragl
Department of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
,
J. Großeheilmann*
Institute for Chemical and Thermal Process Engineering, TU Braunschweig, Langer Kamp 7, D-38106 Braunschweig, Germany
Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, Franz-Liszt-Straße 35a, D-38106 Braunschweig, Germany   Email: j.grosseheilmann@tu-braunschweig.de
› Author Affiliations
This work was financially supported by the DFG (grant KR 2491/12-1) and the Federal Ministry of Education and Research (BMBF, ‘Ionische Flüssigkeiten in der Enzymkatalyse’, grant 031A123). In addition, this work has been carried out within the framework of the SMART BIOTECS­ alliance between Technische Universität Braunschweig and the Leibniz Universität Hannover. This initiative is supported by the Ministry of Economy and Culture (MWK) of Lower Saxony, Germany.
Further Information

Publication History

Received: 22 April 2018

Accepted after revision: 23 April 2018

Publication Date:
08 June 2018 (online)

Abstract

Enzyme immobilization in polymerized ionic liquids (PILs) promises to be a versatile tool for simple recovery and reuse of catalysts. In this study, a raw extract of CalB was encapsulated in poly(VEImBr) and assessed with respect to solvent, temperature, amount of enzyme, leaching behavior, and reusability on the example of the kinetic resolution of rac-1-phenylethanol with vinyl acetate. This immobilization method increased the enzyme activity of the CalB raw extract in comparison to the non-immobilized enzyme. The desired product was synthesized with high enantiomeric excess (ee) and no leaching of active enzyme was observed in the experiments. The immobilization method was compared to Novozyme 435 and Lipozyme RM IM, as commercially available immobilisates. Nonpolar solvents, including n-heptane and n-dodecane, proved to be the best reaction solvents, showing nearly full conversion and high catalytic activities. The encapsulated ­lipase was easily recovered from the reaction mixture and reused for ten cycles.

Supporting Information

 
  • References

    • 1a Eş I. Vieira JD. G. Amaral AC. Appl. Microbiol. Biotechnol. 2015; 99: 2065
    • 1b DiCosimo R. McAuliffe J. Poulose AJ. Bohlmann G. Chem. Soc. Rev. 2013; 42: 6437
    • 1c Liese A. Hilterhaus L. Chem. Soc. Rev. 2013; 42: 6236
    • 1d Messing R. Immobilized Enzymes for Industrial Reactors . Elsevier; Amsterdam: 2012
    • 2a Bornscheuer UT. Angew. Chem. Int. Ed. 2003; 42: 3336
    • 2b Schmid A. Dordick JS. Hauer B. Kiener A. Wubbolts M. Witholt B. Nature 2001; 409: 258
    • 2c Anastas P. Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 2d Anastas PT. Kirchhoff MM. Acc. Chem. Res. 2002; 35: 686
  • 3 Sheldon RA. Adv. Synth. Catal. 2007; 349: 1289
  • 4 Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 5a Datta S. Christena LR. Rajaram YR. S. 3 Biotech 2013; 3: 1-9
    • 5b Garcia Galan C. Berenguer Murcia Á. Fernandez Lafuente R. Rodrigues RC. Adv. Synth. Catal. 2011; 353: 2885
    • 5c Mateo C. Palomo JM. Fernandez-Lorente G. Guisan JM. Fernandez-Lafuente R. Enzyme Microb. Technol. 2007; 40: 1451
  • 6 Sheldon RA. van Pelt S. Chem. Soc. Rev. 2013; 42: 6223
  • 7 Kartal F. Janssen MH. A. Hollmann F. Sheldon RA. Kılınc A. J. Mol. Catal. B: Enzym. 2011; 71: 85
  • 8 Sheldon RA. Schoevaart R. van Langen LM. Biocatal. Biotransform. 2005; 23: 141
    • 9a Nemzer LR. Schwartz A. Epstein AJ. Macromolecules 2010; 43: 4324
    • 9b Gonzalez-Saiz JM. Pizarro C. Eur. Polym. J. 2001; 37: 435
    • 10a Ahuja T. Mir IA. Kumar D. Biomaterials 2007; 28: 791
    • 10b Ghosh S. Chaganti SR. Prakasham RS. J. Mol. Catal. B: Enzym. 2012; 74: 132
    • 10c Taqieddin E. Amiji M. Biomaterials 2004; 25: 1937
    • 11a Yuan J. Mecerreyes D. Antonietti M. Prog. Polym. Sci. 2013; 38: 1009
    • 11b Yuan J. Antonietti M. Polymer 2011; 52: 1469
    • 11c Yoshizawa M. Ogihara W. Ohno H. Polym. Adv. Technol. 2002; 13: 589
    • 11d Claus J. Sommer FO. Kragl U. Solid State Ionics 2018; 314: 119
    • 12a Green O. Grubjesic S. Lee S. Firestone MA. Polym. Rev. 2009; 49: 339
    • 12b Lu J. Yan F. Texter J. Prog. Polym. Sci. 2009; 34: 431
    • 12c Mecerreyes D. Prog. Polym. Sci. 2011; 36: 1629
  • 13 Nakashima K. Kamiya N. Koda D. Maruyama T. Goto M. Org. Biomol. Chem. 2009; 7: 2353
    • 14a Moniruzzaman M. Kamiya N. Goto M. Langmuir 2008; 25: 977
    • 14b Moniruzzaman M. Kamiya N. Nakashima K. Goto M. ChemPhysChem 2008; 9: 689
    • 14c Moniruzzaman M. Kamiya N. Nakashima K. Goto M. Green Chem. 2008; 10: 497
  • 15 Moniruzzaman M. Ino K. Kamiya N. Goto M. Org. Biomol. Chem. 2012; 10: 7707
  • 16 López MS.-P. Mecerreyes D. Lopez-Cabarcos E. López-Ruiz B. Biosens. Bioelectron. 2006; 21: 2320
  • 17 Zhang Q. Wu S. Zhang L. Lu J. Verproot F. Liu Y. Xing Z. Li J. Song X.-M. Biosens. Bioelectron. 2011; 26: 2632
  • 18 Großeheilmann J. Bandomir J. Kragl U. Chem. Eur. J. 2015; 21: 18957
  • 19 Bandomir J. Schulz A. Taguchi S. Schmitt L. Ohno H. Sternberg K. Schmitz KP. Kragl U. Macromol. Chem. Phys. 2014; 215: 716
  • 20 Kazlauskas RJ. Weissfloch AN. E. Rappaport AT. Cuccia LA. J. Org. Chem. 1991; 56: 2656
  • 21 Faber K. Biotransformations in Organic Chemistry 1992
  • 22 Schöfer SH. Kaftzik N. Wasserscheid P. Kragl U. Chem. Commun. 2001; 425
  • 23 Kim HS. Eom D. Koo Y.-M. Yingling YG. Phys. Chem. Chem. Phys. 2016; 18: 22062
    • 24a Kim K.-W. Song B. Choi M.-Y. Kim M.-J. Org. Lett. 2001; 3: 1507
    • 24b Lau RM. Sorgedrager MJ. Carrea G. van Rantwijk F. Secundo F. Sheldon RA. Green Chem. 2004; 6: 483
    • 24c Lozano P. de Diego T. Carrie D. Vaultier M. Iborra JL. Biotechnol. Lett. 2001; 23: 1529
    • 24d Madeira Lau R. van Rantwijk F. Seddon KR. Sheldon RA. Org. Lett. 2000; 2: 4189
  • 25 Franken B. Eggert T. Jaeger KE. Pohl M. BMC Biochem. 2011; 12: 10
  • 26 Gandhi NN. Patil NS. Sawant SB. Joshi JB. Wangikar PP. Mukesh D. Catal. Rev. 2000; 42: 439
  • 27 Weber HK. Weber H. Kazlauskas RJ. Tetrahedron: Asymmetry 1999; 10: 2635
  • 28 Hoffman AS. Adv. Drug Delivery Rev. 2012; 64: 18
  • 29 Hernández-Martín E. Otero C. Bioresour. Technol. 2008; 99: 277
  • 30 Chen B. Hu J. Miller EM. Xie W. Cai M. Gross RA. Biomacromolecules 2008; 9: 463
  • 31 Sheldon RA. Biochem. Soc. Trans. 2007; 35: 1583
  • 32 Hobbs HR. Kondor B. Stephenson P. Sheldon RA. Thomas NR. Poliakoff M. Green Chem. 2006; 8: 816
  • 33 Toral AR. Antonia P. Hernández FJ. Janssen MH. A. Schoevaart R. van Rantwijk F. Sheldon RA. Enzyme Microb. Technol. 2007; 40: 1095
  • 34 Marcilla R. Alberto Blazquez J. Rodriguez J. Pomposo JA. Mecerreyes D. J. Polym. Sci., Part A: Polym. Chem. 2004; 42: 208
  • 35 Cassells JM. Halling PJ. Enzyme Microb. Technol. 1988; 10: 486