Synthesis 2018; 50(14): 2741-2752
DOI: 10.1055/s-0037-1610129
paper
© Georg Thieme Verlag Stuttgart · New York

Consecutive Alkynylation–Michael Addition–Cyclocondensation (AMAC) Multicomponent Syntheses of α-Pyrones and α-Pyridones

Natascha Breuer
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
,
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
› Author Affiliations
Further Information

Publication History

Received: 15 March 2018

Accepted after revision: 07 April 2018

Publication Date:
28 May 2018 (online)


Abstract

A novel consecutive three-component synthesis of α-pyrones is based upon an alkynylation–Michael addition–cyclocondensation (AMAC) sequence, starting from (hetero)aroyl chloride and terminal alkyne to furnish the alkynone which reacts with malonates to give the α-pyrones in moderate to very good yields. By concatenating ammonolysis of the α-pyrones, an alkynylation–Michael addition–cyclocondensation–ammonolysis (AMACA) synthesis of α-pyridones can be conceived. α-Pyridone products with and without ester functionality are obtained in moderate yields.

Supporting Information

 
  • References

  • 1 Brogden PJ. Gabbutt CD. Hepworth JD. In Comprehensive Heterocyclic Chemistry . Vol. 3. Katritzky AR. Rees CW. Pergamon; Oxford: 1984: 573
    • 2a Lee JS. Mar. Drugs 2015; 13: 1581
    • 2b McGlacken GP. Fairlamb IJ. Nat. Prod. Rep. 2005; 22: 369
    • 2c Schäberle TF. Beilstein J. Org. Chem. 2016; 12: 571
  • 3 Fairlamb IJ. O’Brien CT. Lin Z. Lam KC. Org. Biomol. Chem. 2006; 4: 1213
    • 4a Posner GH. Woodard BT. Crawford KR. Peleg S. Brown AJ. Dolan P. Kensler TW. Bioorg. Med. Chem. 2002; 10: 2353
    • 4b Woodard BT. Posner GH. Adv. Cycloaddit. 1999; 5: 47
  • 5 Buck SB. Hardouin C. Ichikawa S. Soenen DR. Gauss C.-M. Hwang I. Swingle MR. Bonness KM. Honkanen RE. Boger DL. J. Am. Chem. Soc. 2003; 125: 15694
    • 6a Abdullahi MH. Thompson LM. Bearpark MJ. Vinader V. Afarinkia K. Tetrahedron 2016; 72: 6021
    • 6b Goel J. Ram VJ. Tetrahedron 2009; 65: 7865
    • 6c Posner GH. Hutchings RH. Woodard BT. Synlett 1997; 432
  • 7 Pathare RS. Sharma S. Gopal K. Sawant DM. Pardasani RT. Tetrahedron Lett. 2017; 58: 1387
  • 8 Yao T. Larock RC. J. Org. Chem. 2003; 68: 5936
  • 9 Wang Y. Burton DJ. J. Org. Chem. 2006; 71: 3859
  • 10 Anastasia L. Xu C. Negishi E.-i. Tetrahedron Lett. 2002; 43: 5673
  • 11 Mochida S. Hirano K. Satoh T. Miura M. J. Org. Chem. 2009; 74: 6295
  • 12 Ackermann L. Pospech J. Graczyk K. Rauch K. Org. Lett. 2012; 14: 930
    • 13a Ma S. Yin S. Li L. Tao F. Org. Lett. 2002; 4: 505
    • 13b Ma S. Yu S. Yin S. J. Org. Chem. 2003; 68: 8996
  • 14 Hachiya I. Shibuya H. Shimizu M. Tetrahedron Lett. 2003; 44: 2061
  • 15 Kohler EP. J. Am. Chem. Soc. 1922; 44: 379
  • 16 Barat C. Chittaranjan N. J. Indian Chem. Soc. 1930; 7: 851
    • 17a Cavalieri LF. Chem. Rev. 1947; 41: 525
    • 17b Tsuda T. Hokazono H. Macromolecules 1994; 27: 1289
  • 18 Lv Z. Zhang Y. Zhang M. Chen H. Sun Z. Geng D. Niu C. Li K. Eur. J. Med. Chem. 2013; 67: 447
  • 19 Desai NC. Rajpara KM. Joshi VV. Bioorg. Med. Chem. Lett. 2013; 23: 2714
  • 20 Dragovich PS. Prins TJ. Zhou R. Brown EL. Maldonado FC. Fuhrman SA. Zalman LS. Tuntland T. Lee CA. Patick AK. J. Med. Chem. 2002; 45: 1607
  • 21 Akhtar MS. Shim J.-J. Kim SH. Lee YR. New J. Chem. 2017; 41: 13027
  • 22 Fujii M. Nishimura T. Koshiba T. Yokoshima S. Fukuyama T. Org. Lett. 2013; 15: 232
  • 23 Hachiya I. Ogura K. Shimizu M. Org. Lett. 2002; 4: 2755
    • 24a Ackermann L. Lygin AV. Hofmann N. Org. Lett. 2011; 13: 3278
    • 24b Su Y. Zhao M. Han K. Song G. Li X. Org. Lett. 2010; 12: 5462
    • 25a D’Souza DM. Müller TJ. J. Nat. Protoc. 2008; 3: 1660
    • 25b Karpov AS. Müller TJ. J. Org. Lett. 2003; 5: 3451
    • 25c Müller TJ. J. Top. Heterocycl. Chem. 2010; 25: 25
    • 26a Gers-Panther CF. Müller TJ. J. Adv. Heterocycl. Chem. 2016; 120: 67
    • 26b Willy B. Müller TJ. J. Curr. Org. Chem. 2009; 13: 1777
  • 27 Karpov AS. Merkul E. Rominger F. Müller TJ. J. Angew. Chem. Int. Ed. 2005; 44: 6951
    • 28a Nordmann J. Breuer N. Müller TJ. J. Eur. J. Org. Chem. 2013; 4303
    • 28b Nordmann J. Müller TJ. J. Synthesis 2014; 46: 522
  • 29 Specht ZG. Grotjahn DB. Moore CE. Rheingold AL. Organometallics 2013; 32: 6400