Synlett 2018; 29(16): 2126-2130
DOI: 10.1055/s-0037-1610110
cluster
© Georg Thieme Verlag Stuttgart · New York

α-Alkylation of N–C Axially Chiral Quinazolinone Derivatives Bearing Various ortho-Substituted Phenyl Groups: Relation between Diastereoselectivity and the ortho-Substituent

Mizuki Matsuoka
Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan   Email: kitagawa@shibaura-it.ac.jp
,
Asumi Iida
Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan   Email: kitagawa@shibaura-it.ac.jp
,
Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan   Email: kitagawa@shibaura-it.ac.jp
› Author Affiliations
This work was partly supported by JSPS KAKENHI (C 17K08220).
Further Information

Publication History

Received: 19 March 2018

Accepted after revision: 11 April 2018

Publication Date:
29 May 2018 (online)

Published as part of the Cluster Atropisomerism

Dedicated to the late Professor Kurt Mislow with the deepest respect.

Abstract

2-Ethylquinazolin-4-one derivatives bearing various ortho-substituted phenyl groups were revealed to possess a stable C–N axially chiral structure at ambient temperature. The reactions of alkyl halides with the anionic species prepared from these quinazolinones were systematically explored. The α-alkylation reactions proceeded with diastereoselectivities ranging from 1:1 to >50:1, depending upon the steric bulk of the ortho-substituent, to afford products having the elements of axial and central chirality in high yields (85–98%).

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Alkorta I. Elguero J. Roussel C. Vanthuyne N. Piras P. Adv. Heterocycl. Chem. 2012; 105: 1
    • 1b Takahashi I. Suzuki Y. Kitagawa O. Org. Prep. Proced. Int. 2014; 46: 1
    • 1c Kumarasamy E. Raghunathan R. Sibi MP. Sivaguru J. Chem. Rev. 2015; 115: 11239

      For representative papers, see:
    • 2a Mintas M. Mihaljević V. Koller H. Schuster D. Mannshreck A. J. Chem. Soc., Perkin Trans 2 1990; 619
    • 2b Oğuz SF. Doğan İ. Tetrahedron: Asymmetry 2003; 14: 1857
    • 2c Yilmaz EM. Doğan İ. Tetrahedron: Asymmetry 2008; 19: 2184
    • 2d Hasegawa F. Kawamura K. Tsuchikawa H. Murata M. Bioorg. Med. Chem. 2017; 25: 4506
    • 2e Belot V. Farran D. Jean M. Albalat M. Vanthuyne N. Roussel C. J. Org. Chem. 2017; 82: 10188

      For representative papers on the application of rotationally stable C–N axially chiral compounds in stereoselective reactions, see:
    • 3a Kishikawa K. Tsuru I. Kohomoto S. Yamamoto M. Yamada K. Chem. Lett. 1994; 1605
    • 3b Curran DP. Qi H. Geib SJ. DeMello NC. J. Am. Chem. Soc. 1994; 116: 3131
    • 3c Kitagawa O. Izawa H. Sato K. Dobashi A. Taguchi T. Shiro M. J. Org. Chem. 1998; 63: 2634
    • 3d Hughes AD. Price DA. Simpkins NS. J. Chem. Soc., Perkin Trans. 1 1999; 1295
    • 3e Bach T. Schröder J. Harms K. Tetrahedron Lett. 1999; 40: 9003
    • 3f Dantale S. Reboul V. Metzner P. Philouze C. Chem. Eur. J. 2002; 8: 632
    • 3g Sakamoto M. Shigekura M. Saito A. Ohtake T. Mino T. Fujita T. Chem. Commun. 2003; 2218
    • 3h Kitagawa O. Yoshikawa M. Tanabe H. Morita T. Takahashi M. Dobashi Y. Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923
    • 3i Clayden J. Turner H. Helliwell M. Moir E. J. Org. Chem. 2008; 73: 4415
    • 3j Nakazaki A. Miyagawa K. Miyata N. Nishikawa T. Eur. J. Org. Chem. 2015; 4603
  • 4 Matsuoka M. Goto M. Wzorek A. Soloshonok V. Kitagawa O. Org. Lett. 2017; 19: 2650
    • 5a Mannschreck A. Koller H. Stühler G. Davis MA. Traber J. Eur. J. Med. Chem. 1984; 19: 381
    • 5b Junghänel J. Buss V. Beyrich T. Jira T. Chirality 1998; 10: 253
    • 5c Welch WM. Ewing FE. Huang J. Menniti FS. Pagnozzi MJ. Kelly K. Seymour PA. Guanowsky V. Guhan S. Guinn MR. Critchett D. Lazzaro J. Ganong AH. DeVries KM. Staigers TL. Chenard BL. Bioorg. Med. Chem. Lett. 2001; 11: 177
    • 5d Chenard BL. Welch WM. Blake JF. Butler TW. Reinhold A. Ewing FE. Menniti FS. Pagnozzi MJ. J. Med. Chem. 2001; 44: 1710
    • 5e Dolma S. Lessnick SL. Hahn WC. Stockwell BR. Cancer Cell 2003; 3: 285
    • 5f Tokitoh T. Kobayashi T. Nakada E. Inoue T. Yokoshima S. Takahashi H. Natsugari H. Heterocycles 2006; 70: 93
    • 5g Lodola A. Bertolini S. Biagetti M. Capacchiu S. Facchinetti F. Gall PM. Pappani A. Mor M. Pala D. Rivara S. Visentini F. Corsi M. Capelli AM. J. Med. Chem. 2017; 60: 4304
    • 5h Toenjes ST. Gustafson JL. Future Med. Chem. 2018; 10: 409
    • 6a Wolfe JF. Rathman TL. Sleevi MC. Campbell JA. Greenwood TD. J. Med. Chem. 1990; 33: 161
    • 6b Xu Y.-L. Lin H.-Y. Cao R.-J. Ming Z.-Z. Yang W.-C. Yang G.-F. Bioorg. Med. Chem. 2014; 22: 5194
    • 6c Kumar D. Jadhaver PS. Nautiya M. Sharma H. Meena PK. Adane L. Pancholia S. Chakraborti AK. RSC Adv. 2015; 5: 30819
  • 7 Although the quinazoline-4-one bearing an ortho-tert-butylphenyl group was also prepared, its alkylation was not investigated due to its extremely low solubility in THF and other organic solvents.
  • 8 It has been reported that the separation of enantiomers of 2-(alkylthio)quinazolin-4-ones bearing an ortho -fluorophenyl group is difficult because of the low rotational barrier around the C–N bond; see: Jira T. Schopplich C. Bunke A. Leuthold L. Junghänel J. Theiss R. Kottke K. Besch A. Beyrich T. Pharmazie 1996; 51: 379
  • 9 α-Alkylation of 3-(2-Bromophenyl)-2-ethylquinazolin-4-one (1c); Typical Procedure A 1.3 M solution of LiHDMS in THF (0.346 mL, 0.45 mmol) was added to a solution of rac-1c (99 mg, 0.3 mmol) in THF (2.0 mL) under N2 at –20 °C, and the mixture was stirred for 30 min at –20 °C. Allyl bromide (54 mg, 0.45 mml) was added at –20 °C, and the mixture was stirred for 30 min at –20 °C. The mixture was then poured into saturated aq NH4Cl solution (10 mL) and extracted with EtOAc (3 × 20 mL). The extracts were washed with brine, dried (MgSO4), filtered, and evaporated to dryness. The residue was purified by column chromatography [silica gel, hexane–EtOAc (1:4)] to give a mixture of 2c and 2c′; yield: 94 mg (85%). The diastereomeric ratio of 2c and 2c′ (7.5:1) was determined by 1H NMR analysis. 2c and 2c′ were completely separated by MPLC (hexane–EtOAc, 1:8) to give diastereomerically pure 2c and 2c′
    (P*,S*)-3-(2-Bromophenyl)-2-(1-methylbut-3-en-1-yl)quinazolin-4(3H)-one (2c)
    White solid; yield: 82 mg; mp 114–116 °C. IR (neat): 1684 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.29 (dd, J = 0.8, 7.6 Hz, 1 H), 7.73–7.80 (m, 3 H), 7.51 (dt, J = 1.6, 7.6 Hz, 1 H), 7.47 (ddd, J = 2.0, 6.8, 7.6 Hz, 1 H), 7.39 (dt, J = 1.6, 8.0 Hz, 1 H), 7.33 (dd, J = 1.6, 7.6 Hz, 1 H), 5.57 (tdd, J = 6.8, 10.8, 16.0 Hz, 1 H), 4.94 (d, J = 10.8 Hz, 1 H), 4.94 (d, J = 16.0 Hz, 1 H), 2.41–2.56 (m, 2 H), 2.20 (td, J = 6.8, 13.6 Hz, 1 H), 1.33 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 161.8, 159.8, 147.7, 136.7, 135.5, 134.6, 133.8, 130.7, 128.6, 127.3, 127.0, 126.5, 123.3, 120.6, 117.2, 40.4, 37.9, 18.9. MS: m/z = 391 [M + Na]+ (79Br); HRMS: m/z [M + Na]+Calcd for C19H17 79BrN2NaO: 391.04220; found: 391.04207. (P*,R*)-3-(2-Bromophenyl)-2-(1-methylbut-3-en-1-yl)quinazolin-4(3H)-one (2c′) White solid; yield: 12 mg; mp 78–80 °C. IR (neat): 1680 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.28 (dd, J = 1.6, 8.0 Hz, 1 H), 7.73–7.81 (m, 3 H), 7.51 (dt, J = 1.2, 7.2 Hz, 1 H), 7.47 (ddd, J = 1.2, 7.2, 8.4 Hz, 1 H), 7.40 (dt, J = 2.0, 8.0 Hz, 1 H), 7.35 (dd, J = 2.0, 8.0 Hz, 1 H), 5.71 (m, 1 H), 5.04 (d, J = 17.2 Hz, 1 H), 4.97 (d, J = 10.0 Hz, 1 H), 2.75 (m, 1 H), 2.31–2.40 (m, 2 H), 1.17 (d, J = 6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 161.8, 160.0, 147.6, 136.6, 136.2, 134.6, 133.9, 130.8, 130.2, 128.7, 127.3, 127.1, 126.6, 123.3, 120.6, 117.0, 39.1, 38.0, 19.4. MS: m/z = 391 [M + Na]+ (79Br); HRMS: m/z [M + Na]+Calcd for C19H17 79BrN2NaO: 391.04220; found: 391.04071.