Synthesis 2018; 50(22): 4343-4350
DOI: 10.1055/s-0037-1610108
paper
© Georg Thieme Verlag Stuttgart · New York

The Catalytic Alkylative Desymmetrization of Anhydrides in a Formal Synthesis of Ionomycin

Kevin M. Oberg
a  Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
,
Brian M. Cochran
a  Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
,
Matthew J. Cook
a  Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
,
a  Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
b  Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA   Email: tr2504@columbia.edu
› Author Affiliations
Further Information

Publication History

Received: 07 March 2018

Accepted after revision: 09 April 2018

Publication Date:
29 May 2018 (eFirst)

Dedicated to Professor Scott Denmark on the occasion of his 65th birthday.

Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday.

Abstract

The catalytic desymmetrization of anhydrides with zinc reagents provides access to deoxypolypropionate and polypropionate synthons. A synthesis of ionomycin was pursued in which three of the four fragments were assembled using this methodology. Two of the strategies (enol silane/oxocarbenium coupling and reductive cyclization) were not successful at installing the C23 stereocenter, but this stereochemical issue was overcome through a reduction/SN2 approach. In addition to the synthesis of a protected diastereomer of ionomycin, the synthesis of a C17–C32 fragment constitutes a formal total synthesis.

Supporting Information

 
  • References

    • 1a Cook MJ. Rovis T. J. Am. Chem. Soc. 2007; 129: 9302
    • 1b Cook MJ. Rovis T. Synthesis 2009; 335
    • 1c Johnson JB. Cook MJ. Rovis T. Tetrahedron 2009; 65: 3202
    • 1d Stache EE. Rovis T. Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 3679
  • 2 Cochran BM. Henderson DD. Thullen SM. Rovis T. Synlett 2018; 29: 306

    • For activity and isolation, see:
    • 3a Liu C.-m. Hermann TE. J. Biol. Chem. 1978; 253: 5892
    • 3b Liu W.-c. Slusarchyk DS. Astle G. Trejo WH. Brown WE. Meyers E. J. Antibiot. 1978; 31: 815

    • For structure elucidation, see:
    • 3c Toeplitz BK. Cohen AI. Funke PT. Parker WL. Gougoutas JZ. J. Am. Chem. Soc. 1979; 101: 3344

      Fragment syntheses:
    • 4a Hanessian S. Murray PJ. Sahoo SP. Tetrahedron Lett. 1985; 26: 5627
    • 4b Hanessian S. Murray PJ. Can. J. Chem. 1986; 64: 2231
    • 4c Hanessian S. Murray PJ. Tetrahedron 1987; 43: 5055

    • Total synthesis:
    • 4d Hanessian S. Cooke NG. DeHoff B. Sakito Y. J. Am. Chem. Soc. 1990; 112: 5276

      Fragment syntheses:
    • 5a Evans DA. Morrissey MM. Dow RL. Tetrahedron Lett. 1985; 26: 6005
    • 5b Evans DA. Dow RL. Tetrahedron Lett. 1986; 27: 1007

    • Total synthesis:
    • 5c Evans DA. Dow RL. Shih TL. Takacs JM. Zahler R. J. Am. Chem. Soc. 1990; 112: 5290

      Fragment synthesis:
    • 6a Lautens M. Chiu P. Colucci JT. Angew. Chem. Int. Ed. 1993; 32: 281

    • Total synthesis:
    • 6b Lautens M. Colucci JT. Hiebert S. Smith ND. Bouchain G. Org. Lett. 2002; 4: 1879

      Fragment syntheses:
    • 7a Cooksey J. Kocienski P. Li Y.-F. Collect. Czech. Chem. Commun. 2005; 70: 1653
    • 7b Cooksey JP. Kocienski PJ. Li Y.-f. Schunk S. Snaddon TN. Org. Biomol. Chem. 2006; 4: 3325
    • 7c Li Y. Cooksey JP. Gao Z. Kocienski PJ. McAteer SM. Snaddon TN. Synthesis 2011; 104

    • Total synthesis:
    • 7d Gao Z. Li Y. Cooksey JP. Snaddon TN. Schunk S. Viseux EM. E. McAteer SM. Kocienski PJ. Angew. Chem. Int. Ed. 2009; 48: 5022
    • 8a Wuts PG. M. D’Costa R. Butler W. J. Org. Chem. 1984; 49: 2582
    • 8b Nicoll-Griffith D. Weiler L. J. Chem. Soc., Chem. Commun. 1984; 659
    • 8c Schreiber SL. Wang S. J. Am. Chem. Soc. 1985; 107: 5303
    • 8d Spino C. Weiler L. Tetrahedron Lett. 1987; 28: 731
    • 8e Shelly KP. Weiler L. Can. J. Chem. 1988; 66: 1359
    • 8f Nicoll-Griffith DA. Weiler L. Tetrahedron 1991; 47: 2733
    • 8g Taschner MJ. Chen Q.-Z. Bioorg. Med. Chem. Lett. 1991; 1: 535
    • 8h Guidon Y. Yoakin C. Gorys V. Ogilvie WW. Delorme D. Renaud J. Robinson G. Lavallée J.-F. Slassi A. Jung G. Rancourt J. Durkin K. Liotta D. J. Org. Chem. 1994; 59: 1166
    • 8i Hu TQ. Weiler L. Can. J. Chem. 1994; 72: 1500
    • 8j von der Emde H. Langels A. Noltemeyer M. Brüchner R. Tetrahedron Lett. 1994; 35: 7609
    • 8k Montaña AM. García F. Grima PM. Tetrahedron 1999; 55: 5483
    • 8l Montaña AM. García F. Grima PM. Tetrahedron Lett. 1999; 40: 1375
    • 8m Spino C. Allan M. Can. J. Chem. 2004; 82: 177
    • 8n Novak T. Tan Z. Liang B. Negishi E.-i. J. Am. Chem. Soc. 2005; 127: 2838
    • 8o Marshall JA. Mikowski AM. Org. Lett. 2006; 8: 4375
    • 8p Yadav JS. Yadav NN. Reddy BV. S. Tetrhahedron 2015; 71: 7539
  • 9 Paterson I. Boddy I. Mason I. Tetrahedron Lett. 1987; 28: 5205

    • For the synthesis and chemistry of [Rh(nbd)OAc]2, see:
    • 10a Filloux CM. Rovis T. J. Am. Chem. Soc. 2015; 137: 508

    • For a review on halide influence on metal catalysis, see:
    • 10b Fagnou K. Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
  • 11 Under the same conditions using the same zinc reagent 11, the use of [Rh(nbd)Cl]2 led to 60% conversion and the use of [Rh(nbd)OAc]2 led to 80% conversion by 1H NMR analysis of the unpurified reactions (trimethoxybenzene as the internal standard). Additionally, the [Rh(nbd)OAc]2 produces a cleaner reaction mixture.

    • The use of catalytic CuI and longer equilibrium times leads to purer dialkylzinc reagent 11. For synthesis of dialkylzinc reagents, see:
    • 12a Rozema MJ. Sidduri A. Knochel P. J. Org. Chem. 1992; 57: 1956
    • 12b Knochel P. Singer RD. Chem. Rev. 1993; 93: 2117
  • 13 A two-step procedure converting the alcohol into an iodide and displacement generates slightly cleaner thiol. See Supporting Information for procedure.
    • 14a Marcantoni E. Nobili F. J. Org. Chem. 1997; 62: 4183
    • 14b Arjona O. Menchaca R. Plumet J. Org. Lett. 2001; 3: 107
  • 15 Brown HC. Dhar RK. Bakshi RK. Pandiarajan PK. Singaram B. J. Am. Chem. Soc. 1989; 111: 3441
  • 16 Bartlett SL. Beaudry CM. J. Org. Chem. 2011; 76: 9852
  • 17 See reference 7c.
  • 18 Evans DA. Hoveyda AH. J. Org. Chem. 1990; 55: 5190
  • 19 Nishida A. Hamada T. Yonemitsu O. J. Org. Chem. 1988; 53: 3386
  • 20 We unsuccessfully attempted the Julia olefination with the aldehyde at C16 and the sulfone at C17.
  • 21 Lewis MD. Cha JK. Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
  • 22 Tokuyama H. Miyazaki T. Yokoshima S. Fukuyama T. Synlett 2003; 1512
  • 23 Gierasch TM. Shi Z. Verdine GL. Org. Lett. 2003; 5: 621
    • 24a Nicolaou KC. Hwang CK. Nugiel DA. J. Am. Chem. Soc. 1989; 111: 4136
    • 24b González IC. Forsyth CJ. J. Am. Chem. Soc. 2000; 122: 9099
  • 25 Wilcox CS. Cowart MD. Carbohydr. Res. 1987; 171: 141
  • 26 Matsumura K. Hashiguchi S. Ikariya T. Noyori R. J. Am. Chem. Soc. 1997; 119: 8738
  • 27 Ogawa K. Koyama Y. Ohashi I. Sato I. Hirama M. Angew. Chem. Int. Ed. 2009; 48: 1110

    • Observed reduction:
    • 28a Kögl M. Brecker L. Warrass R. Mulzer J. Eur. J. Org. Chem. 2008; 2714

    • Did not observe reduction:
    • 28b Swindell CS. Patel BP. Tetrahedron Lett. 1987; 28: 5275
    • 28c VanderRoest JM. Grieco PA. J. Am. Chem. Soc. 1993; 115: 5841
    • 28d Naidu SV. Kumar P. Tetrahedron Lett. 2007; 48: 2279
    • 29a Dreher SD. Hornberger KR. Sarraf ST. Leighton JL. Org. Lett. 2000; 2: 3197
    • 29b Bonini C. Campaniello M. Chiummiento L. Videtta V. Tetrahedron 2008; 64: 8766
    • 29c Bonini C. Chiummiento L. Funicello M. Lupattelli P. Videtta V. Tetrahedron Lett. 2008; 49: 5455
  • 30 Preliminary results show the promise of an oxymercuration route to targeted aldehyde 42 (Scheme 14).