Synthesis 2018; 50(17): 3531-3539
DOI: 10.1055/s-0037-1610072
paper
© Georg Thieme Verlag Stuttgart · New York

Perfluorinated Ammonium and Phosphonium Ionic Liquids

Torben Alpers
a   Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany   Email: jens.christoffers@uol.de
b   Ferdinand Eimermacher GmbH & Co. KG, 48356 Nordwalde, Germany
,
Thomas W. T. Muesmann
b   Ferdinand Eimermacher GmbH & Co. KG, 48356 Nordwalde, Germany
,
Oliver Temme
b   Ferdinand Eimermacher GmbH & Co. KG, 48356 Nordwalde, Germany
,
Jens Christoffers*
a   Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany   Email: jens.christoffers@uol.de
› Author Affiliations
Further Information

Publication History

Received: 31 March 2018

Accepted after revision: 04 May 2018

Publication Date:
19 June 2018 (online)


Abstract

Ammonium and phosphonium ionic liquids with perfluorinated side chains were prepared as hybrid materials for surface impregnation. Melting points of the triflimide salts range up to 95 °C. The key feature of this investigation are relatively short perfluorohexyl residues as the fluorinated part of the cations, making the target compounds beneficial alternatives to established products because of their enhanced degradability and therefore lower bioaccumulativity. In the ammonium series, pyrrolidinium, piperidinium, morpholinium triflimides as well as the dication derived from DABCO were prepared. Mono-phosphonium triflimides were obtained from triphenyl- and diphenylphosphane. Diphosphonium bistriflimides were obtained from bis(diphenylphosphano)alkanes, Ph2P(CH2)nPPh2 with n = 2–5. As alkylating reagents, n-C6F13CH2CH2OTf and n-C6F13CH2CH2I were applied.

Supporting Information

 
  • References

  • 1 Lindstrom AB. Strynar MJ. Libelo EL. Environ. Sci. Technol. 2011; 45: 7954
    • 2a Wang Z. DeWitt JC. Higgins CP. Cousins IT. Environ. Sci. Technol. 2017; 51: 2508
    • 2b Xu X.-L. Xu H.-Y. Zhang D.-Y. Shen X.-y. Tong G.-Z. Lu Y. Wang W. Appl. Mech. Mater. 2013; 295–298: 513
    • 2c Zareitalabad P. Siemens J. Hamer M. Amelung W. Chemosphere 2013; 91: 725
    • 3a Washburn ST. Bingman TS. Braithwaite SK. Buck RC. Buxton LW. Clewell HJ. Haroun LA. Kester JE. Rickard RW. Shipp AM. Environ. Sci. Technol. 2005; 39: 3904
    • 3b Fiedler S. Pfister G. Schramm K.-W. Toxicol. Environ. Chem. 2010; 92: 1801
    • 4a Hekster FM. Laane RW. P. M. de Voogt P. Rev. Environ. Contam. Toxicol. 2003; 179: 99
    • 4b Huset CA. Barlaz MA. Barofsky DF. Field JA. Chemosphere 2011; 82: 1380
    • 4c Goosey E. Harrad S. Environ. Int. 2011; 37: 86
  • 5 Moody CA. Hebert GN. Strauss SH. Field JA. J. Environ. Monit. 2003; 5: 341
    • 6a Kubwabo C. Vais N. Benoit FM. J. Environ. Monit. 2004; 6: 540
    • 6b Kannan K. Franson JC. Bowerman WW. Hansen KJ. Jones PD. Giesy JP. Environ. Sci. Technol. 2001; 35: 3065
    • 7a Vierke L. Schulte C. Nachr. Chem. 2016; 64: 969
    • 7b Martin JW. Asher BJ. Beesoon S. Benskin JP. Ross MS. J. Environ. Monit. 2010; 12: 1979
  • 8 Vierke L. Staude C. Biegel-Engler A. Drost W. Schulte C. Environ. Sci. Eur. 2012; 24: 16
    • 9a Gordon SC. Regul. Toxicol. Pharmacol. 2011; 59: 64
    • 9b Wang Z. Cousins IT. Scheringer M. Hungerbühler K. Environ. Int. 2013; 60: 242
    • 10a Sun W. Gamez VM. Otero-Gonzales L. Cho Y. Ober CK. Sierra-Alvarez R. Arch. Environ. Contam. Toxicol. 2013; 64: 187
    • 10b Ochoa-Herrera V. Field JA. Luna-Velasco A. Sierra-Alvares R. Environ. Sci.: Processes Impacts 2016; 18: 1236
  • 11 Alpers T. Muesmann TW. T. Temme O. Christoffers J. Eur. J. Org. Chem. 2017; 609
    • 12a Fluorous Chemistry . In Topics in Current Chemistry . Vol. 308. Horvath I. Springer; Heidelberg: 2012
    • 12b Zhang W. Chem. Rev. 2004; 104: 2531
    • 12c Dobbs AP. Kimberley MR. J. Fluorine Chem. 2002; 118: 3
    • 13a Ghandi K. Green Sustainable Chem. 2014; 4: 44
    • 13b Ionic Liquids . In Topics in Current Chemistry . Vol. 290. Kirchner B. Springer; Heidelberg: 2009
    • 13c Ionic Liquids in Synthesis . Wasserscheid P. Welton T. Wiley-VCH; Weinheim: 2002
    • 14a Sheldon RA. Chem. Eur. J. 2016; 22: 12984
    • 14b Lozano P. Green Chem. 2010; 12: 555
    • 14c Dupont J. Consorti CS. Spencer J. J. Braz. Chem. Soc. 2000; 11: 337
    • 15a Soh L. Eckelman MJ. ACS Sustainable Chem. Eng. 2016; 4: 5821
    • 15b Carvalho PJ. Kurnia KA. Coutinho JA. P. Phys. Chem. Chem. Phys. 2016; 18: 14757
    • 15c Clark JH. Tavener SJ. Org. Process Res. Dev. 2007; 11: 149
  • 16 Review: Pereiro AB. Araujo JM. M. Martinho S. Alves F. Nunes S. Matias A. Duarte CM. M. Rebelo LP. N. Marrucho IM. ACS Sustainable Chem. Eng. 2013; 1: 427

    • Review:
    • 17a Xue H. Verma R. Shreeve JM. J. Fluorine Chem. 2006; 127: 159

    • Examples:
    • 17b Vanhoutte G. Hojniak SD. Barde F. Binnemans K. Fransaer J. RSC Adv. 2018; 8: 4525
    • 17c Lo Celso F. Yoshida Y. Castiglione F. Ferro M. Mele A. Jafta CJ. Triolo A. Russina O. Phys. Chem. Chem. Phys. 2017; 19: 13101
    • 17d Greaves TL. Kennedy DF. Shen Y. Hawley A. Song G. Drummond CJ. Phys. Chem. Chem. Phys. 2013; 15: 7592
    • 17e van den Broeke J. Winter F. Deelman B.-J. van Koten G. Org. Lett. 2002; 4: 3851
  • 18 Review: Xue H. Shreeve JM. Eur. J. Inorg. Chem. 2005; 2573
    • 19a Alpers T. Schmidtmann M. Muesmann TW. T. Temme O. Christoffers J. Eur. J. Org. Chem. 2017; 4283
    • 19b Abate A. Petrozza A. Roiati V. Guarnera S. Snaith H. Matteucci F. Lanzani G. Metrangolo P. Resnati G. Org. Electron. 2012; 13: 2474
    • 19c Yu H. Wan L. Cai C. J. Fluorine Chem. 2012; 144: 143
    • 19d Kysilka O. Rybackova M. Skalicky M. Kvicalova M. Cvacka J. Kvicala J. J. Fluorine Chem. 2009; 130: 629
    • 19e Skalicky M. Rybackova M. Kysilka O. Kvicalova M. Cvacka J. Cejka J. Kvicala J. J. Fluorine Chem. 2009; 130: 966
    • 19f Singh RP. Manandhar S. Shreeve JM. Synthesis 2003; 1579
    • 19g Singh RP. Manandhar S. Shreeve JM. Tetrahedron Lett. 2002; 43: 9497
    • 19h Xu L. Chen W. Bickley JF. Steiner A. Xiao J. J. Organomet. Chem. 2000; 598: 409
    • 20a Mirzaei YR. Shreeve JM. Synthesis 2003; 24
    • 20b Mirzaei YR. Twamley B. Shreeve JM. J. Org. Chem. 2002; 67: 9340
    • 21a Honda M. Iwamoto T. Ohnogi T. Kunimoto K.-K. Segi M. Tetrahedron Lett. 2017; 58: 3191
    • 21b Alhanash HB. Brisdon AK. J. Fluorine Chem. 2013; 156: 152
  • 22 Review: Cohen N. Dotan A. Dodiuk H. Kenig S. Mater. Manuf. Processes 2016; 31: 1143
    • 23a Tindale JJ. Mouland KL. Ragogna PJ. J. Mol. Liq. 2010; 152: 14
    • 23b Tindale JJ. Ragogna PJ. Chem. Commun. 2009; 1831
    • 23c Tindale JJ. Na C. Jennings MC. Ragogna PJ. Can. J. Chem. 2007; 85: 660
    • 23d Emnet C. Weber KM. Vidal JA. Consorti CS. Stuart AM. Gladysz JA. Adv. Synth. Catal. 2006; 348: 1625
  • 24 Briza T. Kvicala J. Paleta O. Cermak J. Tetrahedron 2002; 58: 3841
  • 25 Kuhlmann U. Senn A. FR 95059 E 1979 1971; 74: 41886
  • 26 Hachemaoui A. Belbachir M. Yahiaoui A. Asian J. Chem. 2005; 17: 755
  • 27 Pal K. Pore SK. Sinha S. Janardhanan R. Mukhopadhyay D. Banerjee R. J. Med. Chem. 2011; 54: 2378
    • 28a Rocaboy C. Rutherford D. Bennet BL. Gladysz JA. J. Phys. Org. Chem. 2000; 13: 596
    • 28b Cecutti C. Rico I. Lattes A. Novelli A. Rico A. Marion G. Graciaa A. Lachaise J. Eur. J. Med. Chem. 1989; 24: 485
    • 29a Bhattacharyya P. Gudmunsen D. Hope EG. Kemmitt RD. W. Paige DR. Stuart AM. J. Chem. Soc., Perkin Trans. 1 1997; 3609
    • 29b Gudmunsen D. Hope EG. Paige DR. Stuart AM. J. Fluorine Chem. 2009; 130: 942