Synthesis 2018; 50(24): 4922-4932
DOI: 10.1055/s-0037-1609947
paper
© Georg Thieme Verlag Stuttgart · New York

Dynamic Kinetic Resolution of Phosphinic Acid Derivatives via Nucleophilic­ Substitution at Phosphorus Center

Dorota Strzelecka
a  Department of Organic Chemistry, Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 33 Gliniana St., 20-614 Lublin, Poland   Email: marek.stankevic@poczta.umcs.lublin.pl
,
Olga Bąk
b  Department of Chromatographic Methods, Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Sklodowska Sq., 20-031 Lublin, Poland   Email: piotr.borowski@poczta.umcs.lublin.pl
,
Piotr Borowski*
b  Department of Chromatographic Methods, Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Sklodowska Sq., 20-031 Lublin, Poland   Email: piotr.borowski@poczta.umcs.lublin.pl
,
a  Department of Organic Chemistry, Faculty of Chemistry, Marie Curie-Sklodowska University in Lublin, 33 Gliniana St., 20-614 Lublin, Poland   Email: marek.stankevic@poczta.umcs.lublin.pl
› Author Affiliations
Further Information

Publication History

Received: 28 June 2018

Accepted after revision: 14 August 2018

Publication Date:
05 September 2018 (online)


Abstract

Reaction of racemic phosphinic acid derivatives with chiral alcohols proceeds with predominant formation of one diastereomer. The highest level of enrichment has been obtained for transesterfication of racemic methyl benzylphenylphosphinate (64% de). The outcome of the reaction depends on both the structure of chiral alcohol and the starting organophosphorus compound. The results strongly suggest that the nature of the observed phenomena is not a classical equilibration of intermediates found in dynamic kinetic resolution process but is a result of a different reactivity of both enantiomers of racemic substrate towards the same chiral nucleophile.

Supporting Information

 
  • References

  • 2 Catalytic Asymmetric Synthesis. Ojima I. Wiley-VCH; Weinheim: 2000. 2nd ed. Chap. 1-3
  • 3 Knowles WS. Sabacky MJ. Vineyard BD. Weinkauff DJ. J. Am. Chem. Soc. 1975; 97: 2567
    • 4a Lipkowitz KB. D’Hue CA. Sakamoto T. Stack JN. J. Am. Chem. Soc. 2002; 124: 14255
    • 4b Crepy KV. L. Imamoto T. Adv. Synth. Catal. 2003; 345: 79
    • 5a Jugé S. Stephan M. Laffitte JA. Genêt JP. Tetrahedron Lett. 1990; 31: 6357
    • 5b Carey JV. Barker MD. Brown JM. Russell MJ. H. J. Chem. Soc., Perkin Trans. 1 1993; 831
    • 5c Maienza F. Spindler F. Thommen M. Pugin B. Malan C. Mezzetti A. J. Org. Chem. 2002; 67: 5239
    • 5d Colby EA. Jamison TF. J. Org. Chem. 2003; 68: 156
    • 5e Grabulosa A. Muller G. Ordinas JI. Mezzetti A. Maestro MA. Font-Bardia M. Solans X. Organometallics 2005; 24: 4961
    • 6a Muci AR. Campos KR. Evans DA. J. Am. Chem. Soc. 1995; 117: 9075
    • 6b Wolfe B. Livinghouse T. J. Am. Chem. Soc. 1998; 120: 5116
    • 6c Imamoto T. Watanabe J. Wada Y. Masuda H. Yamada H. Tsuruta H. Matsukawa S. Yamaguchi K. J. Am. Chem. Soc. 1998; 120: 1635
    • 6d Tsuruta H. Imamoto T. Tetrahedron: Asymmetry 1999; 10: 877
    • 6e Ohashi A. Imamoto T. Tetrahedron Lett. 2001; 42: 1099
    • 7a Pellissier H. Tetrahedron 2018; 74: 3459
    • 7b Liu B. Yan J. Huang R. Wang W. Jin Z. Zanoni G. Zheng P. Yang S. Chi YR. Org. Lett. 2018; 20: 3447
    • 7c Paladhi S. Hwang I.-S. Yoo EJ. Ryu DH. Song CE. Org. Lett. 2018; 20: 2003
    • 7d Guasch J. Giménez-Nueno I. Funes-Ardoiz I. Bernús M. Matheu MI. Maseras F. Castillón S. Díaz Y. Chem. Eur. J. 2018; 24: 4635
    • 8a Huang X. Oh WR. J. J. Zhou JS. Angew. Chem. Int. Ed. 2018; 57: 7673
    • 8b Ironmonger A. Shipton M. Slater F. Szeto P. Unthank MG. Alexandre F.-R. Caillet C. Dousson CB. Tetrahedron Lett. 2018; 59: 2154
    • 8c Keßberg A. Lübken T. Metz P. Org. Lett. 2018; 20: 3006
    • 8d Song B. Chen M.-W. Zhou Y.-G. Org. Chem. Front. 2018; 5: 1113
  • 9 Wittig G. Cristau HJ. Braun H. Angew. Chem., Int. Ed. Engl. 1967; 6: 700
    • 10a Kiełbasiński P. Omelańczuk J. Mikołajczyk M. Tetrahedron: Asymmetry 1998; 9: 283
    • 10b Kwiatkowska M. Krasiński G. Cypryk M. Cierpiał T. Kiełbasiński P. Tetrahedron: Asymmetry 2011; 22: 1581
    • 10c Mikołajczyk M. Łuczak J. Kiełbasiński P. Colonna S. Tetrahedron: Asymmetry 2009; 20: 1948
  • 11 Deerenberg S. Schrekker HS. van Strijdonck GP. F. Kamer PC. J. van Leeuwen PW. N. M. Fraanje J. Goubitz K. J. Org. Chem. 2000; 65: 4810
    • 12a Bergin E. O’Connor CT. Robinson SB. McGarrigle EM. O’Mahony CP. Gilheany DG. J. Am. Chem. Soc. 2007; 129: 9566
    • 12b Nikitin K. Rajendran KV. Müller-Bunz H. Gilheany DG. Angew. Chem. Int. Ed. 2014; 53: 1906
    • 12c Rajendran KV. Gilheany DG. Chem. Commun. 2012; 48: 10040
    • 13a Liu L.-J. Wang W.-M. Yao L. Meng F.-J. Sun Y.-M. Xu H. Xu Z.-Y. Li Q. Zhao C.-Q. Han L.-B. J. Org. Chem. 2017; 82: 11990
    • 13b Krasowska D. Chrzanowski J. Kiełbasiński P. Drabowicz J. Molecules 2016; 21: 1573
    • 14a Bürgi H.-B. Shklover V. In Reaction Paths for Nucleophilic Substitution (SN2) Reactions. In Structure Correlation. Vol. 1. Bürgi H.-B. Dunitz JD. Wiley-VCH; Weinheim: 2008
    • 14b Jennings EV. Nikitin K. Ortin Y. Gilheany DG. J. Am. Chem. Soc. 2014; 136: 16217
    • 14c Kolodiazhnyi OI. Kolodiazhna A. Tetrahedron: Asymmetry 2017; 28: 1651
    • 15a Oswald AA. Can. J. Chem. 1959; 37: 1498
    • 15b Froneman M. Modro TA. Tetrahedron Lett. 1988; 27: 3327
    • 16a Bálint E. Tajti A. Drahos L. Ilia G. Keglevich G. Curr. Org. Chem. 2013; 17: 555
    • 16b Bálint E. Tajti A. Tóth N. Keglevich G. Molecules 2018; 23: 1618
    • 17a Harger MJ. P. J. Chem. Soc., Perkin Trans. 2 1977; 1882
    • 17b Benamer M. Turcaud S. Royer J. Tetrahedron Lett. 2010; 51: 645
    • 18a Korpiun O. Lewis RA. Chickos J. Mislow K. J. Am. Chem. Soc. 1968; 98: 4842
    • 18b Oshiki T. Imamoto T. Bull. Chem. Soc. Jpn. 1990; 63: 3719
    • 18c Reichl KD. Ess DH. Radosevich AT. J. Am. Chem. Soc. 2013; 135: 9354
    • 19a Orgué S. Flores-Gaspar A. Biosca M. Pàmies O. Diéguez M. Riera A. Verdaguer X. Chem. Commun. 2015; 51: 17548
    • 19b Salomo E. Prades A. Riera A. Verdaguer X. J. Org. Chem. 2017; 82: 7065
  • 20 Bąk, O.; Borowski, P.; Stankevič, M. manuscript in preparation.
  • 21 Berger O. Montchamp JL. Angew. Chem. Int. Ed. 2013; 52: 11377
  • 22 Dams I. Białońska A. Ciunik Z. Wawrzeńczyk C. Eur. J. Org. Chem. 2004; 2662
  • 23 Gream GE. Wege D. Mular M. Aust. J. Chem. 1974; 27: 567
  • 24 Souto JA. Stockman RA. Ley SV. Org. Biomol. Chem. 2015; 13: 3871
  • 25 Cremonesi G. Dalla CP. Forni A. La Rosa C. Tetrahedron 2013; 69: 1175
  • 26 Huston RC. Bostwick CO. J. Org. Chem. 1948; 13: 331
  • 27 Little CB. Schuster GB. J. Am. Chem. Soc. 1984; 106: 7167
  • 28 Petit C. Favre-Reguillon A. Mignani G. Lemaire M. Green Chem. 2010; 12: 326
  • 29 Rajendran KV. Gilheany DG. Chem. Commun. 2012; 48: 817
  • 30 Harger MJ. P. J. Chem. Soc., Perkin Trans. 2 1980; 1505
  • 31 Yoshino T. Togo H. Synlett 2005; 517
  • 32 Stankevič M. Siek M. Pietrusiewicz KM. ARKIVOC 2011; (v): 102
  • 33 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 34 Krishnan R. Binkley JS. Seeger R. Pople JA. J. Chem. Phys. 1980; 72: 650
  • 35 Frisch MJ. Pople JA. Binkley JS. J. Chem. Phys. 1984; 80: 3265
  • 36 Baker J. Wolinski K. Malagoli M. Kinghorn D. Wolinski P. Magyarfalvi G. Saebo S. Janowski T. Pulay P. J. Comput. Chem. 2009; 30: 317
  • 37 Makowiec S. Rachoń J. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 941
  • 38 Rodriguez VY. del Aguila MA. Iglesias MJ. Lopez Ortiz F. Tetrahedron 2012; 68: 7355
  • 39 Uziel J. Darcel C. Moulin D. Bauduin C. Juge S. Tetrahedron: Asymmetry 2001; 12: 1441
  • 40 Yoshino T. Imori S. Togo H. Tetrahedron 2006; 62: 1309
  • 41 Sheldrick WS. Haegele G. Kueckelhaus W. J. Mol. Struct. 1981; 74: 331
  • 42 Zhou Y. Wang G. Saga Y. Shen R. Goto M. Zhao Y. Han LB. J. Org. Chem. 2010; 75: 7924