Synlett 2018; 29(19): 2515-2522
DOI: 10.1055/s-0037-1609946
cluster
© Georg Thieme Verlag Stuttgart · New York

Novel Fluorescent Fluorene-Containing Conjugated Polymers: Synthesis, Photophysical Properties, and Application for the Detection of Common Bisphenols

Daniel R. Jones
,
Ryan Vallee
,
Mindy Levine*
Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, 02881, USA   Email: m_levine@uri.edu
› Author Affiliations
The authors acknowledge the University of Rhode Island chemistry department for funding of this work.
Further Information

Publication History

Received: 16 July 2018

Accepted after revision: 13 August 2018

Publication Date:
20 September 2018 (online)


Published as part of the Cluster Synthesis of Materials

Abstract

Eight new fluorescent conjugated polymers were synthesized by the Suzuki polycondensation reaction of 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester and a conjugated dihalogenated monomer. The photophysical properties of these polymers were investigated as well-dissolved solutions in chloroform and as nanoparticle suspensions in water. Several of the polymers had large Stokes shifts (greater than 100 nm) and others demonstrated unique changes in the fluorescence properties in aggregated verse nonaggregated forms. Preliminary applications of these polymers in the detection of common bisphenols are also reported.

Supporting Information

 
  • References and Notes

    • 1a Liu S.-Y. Qi X.-L. Lin R.-B. Cheng X.-N. Liao P.-Q. Zhang J.-P. Chen X.-M. Adv. Funct. Mater. 2014; 24: 5866
    • 1b Divya Madhuri U. Radhakrishnan TP. Dalton Trans. 2017; 46: 16236
    • 2a Xiong L. Cao F. Cao X. Guo Y. Zhang Y. Cai X. Bioconjugate Chem. 2015; 26: 817
    • 2b Choi HS. Kim Y. Park JC. Oh MH. Jeon DY. Nam YS. RSC Adv. 2015; 5: 43449
    • 3a Wu X. Li H. Xu Y. Tong H. Wang L. Polym. Chem. 2015; 6: 2305
    • 3b Ran Q. Ma J. Wang T. Fan S. Yang Y. Qi S. Cheng Y. Song F. New J. Chem. 2016; 40: 6281
    • 3c Casey A. Ashraf RS. Fei Z. Heeney M. Macromolecules 2014; 47: 2279
  • 4 Pal K. Sharma V. Sahoo D. Kapuria N. Koner AL. Chem. Commun. 2018; 54: 523
    • 5a Rochat S. Swager TM. ACS Appl. Mater. Interfaces 2013; 5: 4488
    • 5b Swager TM. Macromolecules 2017; 50: 4867
    • 6a Resch-Genger U. Rurack K. Pure Appl. Chem. 2013; 85: 2005
    • 6b Wu I.-C. Yu J. Ye F. Rong Y. Gallina ME. Fujimoto BS. Zhang Y. Chan Y.-H. Sun W. Zhou X.-H. Wu C. Chiu DT. J. Am. Chem. Soc. 2014; 137: 173
  • 7 Talbert W. Jones D. Morimoto J. Levine M. New J. Chem. 2016; 40: 7273
  • 8 Marks P. Cohen S. Levine M. J. Polym. Sci. A: Polym. Chem. 2013; 51: 4150
  • 9 Marks P. Radaram B. Levine M. Levitsky IA. Chem. Commun. 2015; 51: 7061
  • 10 Bouffard J. Swager TM. Macromolecules 2008; 41: 5559
  • 11 Feng L. Sha J. He Y. Chen S. Liu B. Zhang H. Lu C. Micro­porous Mesoporous Mater. 2015; 208: 113
  • 12 Li S. Chen F. Liu F. Liu F. Liu Z. Zeng R. Tang H. Gao Z. Zhou H. J. Liq. Chromatogr. Relat. Technol. 2015; 38: 1474
  • 13 Im J. Löffler FE. Environ. Sci. Technol. 2016; 50: 8403
  • 14 Kundakovic M. Champagne FA. Brain. Behav. Immun. 2011; 25: 1084
  • 15 Muhamad MS. Salim MR. Lau WJ. Yusop Z. Environ. Sci. Pollut. Res. 2016; 23: 11549
  • 16 Delfosse V. Grimaldi M. Pons J.-L. Boulahtouf A. Le Maire A. Cavailles V. Labesse G. Bourguet W. Balaguer P. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 14930
  • 17 Caballero-Casero N. Lunar L. Rubio S. Anal. Chim. Acta 2016; 908: 22
    • 18a Zhao C., Xie P., Wang H., Cai Z.; J. Hazard. Mater.; 2018, in press; DOI: 10.1016/j.jhazmat.2018.05.010.
    • 18b Sun F. Kang L. Xiang X. Li H. Luo X. Luo R. Lu C. Peng X. Bioanal Chem. 2016; 408: 6913
    • 19a Ling LJ. Xu JP. Deng YH. Peng Q. Chen JH. Ya SH. Nie YJ. Anal. Methods 2018; 10: 2722
    • 19b Tan F. Cong L. Li X. Zhao Q. Zhao H. Quan X. Chen J. Sensors Actuators B: Chem. 2016; 233: 599
  • 20 Gao Y. Cao Y. Yang D. Luo X. Tang Y. Li H. J. Hazard. Mater. 2012; 199-200, 111
  • 21 Hou C. Zhao L. Geng F. Wang D. Guo L.-H. Bioanal. Chem. 2016; 408: 8795
  • 22 Yang D. He Y. Sui Y. Chen F. Anal. Methods 2016; 8: 7272
    • 23a Babudri F. Farinola GM. Naso F. Synlett 2009; 2740
    • 23b Schlüter AD. J. Polym. Sci. A: Polym. Chem. 2001; 39: 1533
  • 24 Maluenda I. Navarro O. Molecules 2015; 20: 7528
  • 25 Akkuratov AV. Susarova DK. Moskvin YL. Anokhin DV. Chernyak AV. Prudnov FA. Novikov DV. Babenko SD. Troshin PA. J. Mater. Chem. C 2015; 3: 1497
  • 26 Liu SJ. Zhang ZP. Chen DC. Duan CH. Lu JM. Zhang J. Huang F. Su SJ. Chen JW. Cao Y. Sci. China Chem. 2013; 56: 1119
  • 27 Wu J.-S. Cheng Y.-J. Lin T.-Y. Chang C.-Y. Shih P.-I. Hsu C.-S. Adv. Funct. Mater. 2012; 22: 1711
  • 28 Yoon J. Kwag J. Shin TJ. Park J. Lee YM. Lee Y. Park J. Heo J. Joo C. Park TJ. Yoo PJ. Kim S. Park J. Adv. Mater. 2014; 26: 4559
    • 29a Hohl B. Bertschi L. Zhang X. Schlüter AD. Sakamoto J. Macromolecules 2012; 45: 5418
    • 29b Moscatelli A. Livingston K. So WY. Lee SJ. Scherf U. Wildeman J. Peteanu LA. J. Phys. Chem. B 2010; 114: 14430
  • 30 Li J. Li M. Bo Z. Chem. Eur. J. 2005; 11: 6930
  • 31 Synthesis of P1 Tris(dibenzylideneacetone)dipalladium(0) (13.7 mg, 0.015 mmol, 0.15 equiv), potassium carbonate (41.46 mg, 0.3 mmol, 3 equiv), tri(o-tolyl)phosphine (9.1 mg, 0.03 mmol, 0.3 equiv), 2,7-dibromofluorenone (compound 5, 33.8 mg, 0.1 mmol, 1.0 equiv), and 9,9-dioctylfluorene-2,7-diboronic acid bis(1,3-propanediol) ester (compound 4, 55.8 mg, 0.1 mmol, 1.0 equiv) were added to a round-bottomed flask under an inert nitrogen atmosphere. Toluene (3 mL), 95% ethanol (3 mL), and water (3 mL) were each degassed and added to the flask with a syringe, and the reaction mixture was heated at 50 °C for 72 h under an inert nitrogen atmosphere. The reaction mixture was cooled to r.t. and excess chloroform (approximately 20 mL) was added to the flask. The resulting suspension was filtered by using gravity filtration to remove all palladium byproducts. The organic layer was separated from the aqueous layer, dried over sodium sulfate, filtered, and concentrated with a rotary evaporator. The crude product was precipitated in methanol from chloroform affording a green solid in 96% yield (59.4 mg). Mn = 5000, Mw = 6500, PDI = 1.30. UV absorbance λmax = 374 nm; fluorescence emission λmax = 427 nm, 449 nm; quantum yield = 0.908.
  • 32 Chen Z. Liang J. Han X. Yin J. Yu G.-A. Liu SH. Dyes ­Pigments 2015; 112: 59
  • 33 Chang C.-W. Soelling TI. Diau EW.-G. Chem. Phys. Lett. 2017; 686: 218
  • 34 Ermolaev NL. Lenin IV. Fukin GK. Shavyrin AS. Lopatin MA. Kuznetsova OV. Andreev BA. Kryzhkov DI. Ignatov SK. Chuhmanov EP. Berberova NT. Pashchenko KP. J. Organomet. Chem. 2015; 797: 83
  • 35 Cardinal JR. Mukerjee P. J. Phys. Chem. 1985; 82: 1614
  • 36 Schwarz FP. Wasik SP. Anal. Chem. 1976; 48: 524
  • 37 Spano SC. Acc. Chem. Res. 2010; 43: 429
  • 38 Detection Experiment A bisphenol solution (0.5 mL, 100, 500, 1000 μM in chloroform or 50, 100 μM in water) was added to a quartz cuvette. A polymer solution (2 mL, 0.01 mg/mL in chloroform or as a nanoparticle solution suspended in water) was added to the cuvette. This sample was then measured with the fluorimeter four times and the average of the four runs was reported. The samples were excited at the polymer’s UV-vis absorbance maximum with an excitation slit width of 1.5 nm and emission slit width of 3.0 nm.
  • 39 Fluorescence modulation = Fl analyte/Fl blank where Fl analyte is the integrated fluorescence emission of the polymer in the presence of the analyte and Fl blank is the integrated fluorescence emission of the polymer in the absence of analyte.
  • 40 Zhou Q. Swager TM. J. Am. Chem. Soc. 1995; 117: 12593
    • 41a Huang L. Liao M. Yang X. Gong H. Ma L. Zhao Y. Huang K. RSC Adv. 2016; 6: 7239
    • 41b Guo H. Li H. Liang N. Chen F. Liao S. Zhang D. Wu M. Pan B. Environ. Sci. Pollut. Res. 2016; 23: 8976
    • 42a Szymanski C. Wu C. Hooper J. Salazar MA. Perdomo A. Dukes A. McNeill J. J. Phys. Chem. B 2005; 109: 8543
    • 42b Potai R. Traiphol R. J. Colloid Interface Sci. 2013; 403: 58