Synthesis 2018; 50(24): 4846-4854
DOI: 10.1055/s-0037-1609934
paper
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Syntheses of Thiophene-Based Ionic Liquids: Structural Design and Optimization

María A. Schiel
,
Claudia E. Domini*
Instituto de Química del Sur (INQUISUR), Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina   Email: [email protected]   Email: [email protected]
,
Alicia B. Chopa
,
Instituto de Química del Sur (INQUISUR), Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 29 June 2018

Accepted after revision: 29 July 2018

Publication Date:
21 August 2018 (online)


Abstract

This manuscript explores microwave-assisted reactions for the synthesis of new ionic materials involving the S-alkylation of thiophene. All isolatable products have been fully characterized by NMR and all product have been quantified through UV-vis spectroscopy. By means of a design technique, the experimental protocol (25 min, 200 W, 50 °C) has been optimized, which led us to better yields (96 %). In the absence of MW activation, the conventional thermal reaction at room temperature took longer (24 – 48 h) to obtain similar results.

Supporting Information

 
  • References

  • 1 Rio Declaration on Environment and Development (1992). United Nations; Rio de Janeiro: 1992. http://www.un.org/documents/ga/conf151/aconf15126-1annex1.htm
  • 2 Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; Oxford: 2000
  • 3 Khadilkar BM, Rebeiro GL. Org. Process Res. Dev. 2002; 6: 826
  • 4 Burns CT, Lee S, Seifert SM, Firestone A. Polym. Adv. Technol. 2008; 10: 1369
  • 5 Martínez-Palou R. Mol. Diversity 2010; 14: 3
  • 6 Vidal L, Psillakis E, Domini CE, Grané N, Marken F, Canals A. Anal. Chim. Acta 2007; 584: 189
  • 7 Martins MA, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG. Chem. Rev. 2008; 108: 2015
  • 8 Zhang Y, Lee HK. Anal. Chim. Acta 2012; 750: 120
  • 9 Tan ZQ, Liu JF, Pang L. TrAC, Trends Anal. Chem. 2012; 39: 218
  • 10 Anderson JL, Armstrong DW, Wei G.-T. Anal. Chem. 2006; 2892
  • 11 Welton T. Chem. Rev. 1999; 99: 2071
  • 12 Del Sesto RE, McCleskey TM, Macomber C, Ott KC, Koppisch AT, Baker GA, Burrell AK. Thermochim. Acta 2009; 491: 118
  • 13 Endres F, El Abedin SZ. Phys. Chem. Chem. Phys. 2006; 8: 2101
  • 14 Acheson RM, Harrison DR. J. Chem. Soc. C 1970; 1764
  • 15 Heldeweg RF, Hogeveen H. Tetrahedron Lett. 1974; 15: 75
  • 16 Lee SS, Lee TY, Choi DS, Lee JS, Chung YK, Lee SW, Lah MS. Organometallics 1997; 16: 1749
  • 17 Schiel MA, Domini CE, Chopa AB, Silbestri GF. Arabian J. Chem. 2016; DOI: in press; 10.1016/j.arabjc.2016.11.002.
  • 18 de la Hoz A, Diaz-Ortiz A, Moreno A. Chem. Soc. Rev. 2005; 34: 164
  • 19 Rinaldi L, Carnaroglio D, Rotolo L, Cravotto G. J. Chem. 2015; 879531 ; DOI: 10.1155/2015/879531; http://www.hindawi.com/journals/jchem
  • 20 Gawande MB, Shelke SN, Zboril R, Varma RS. Acc. Chem. Res. 2014; 47: 1338
  • 21 Álvarez MB, Domini CE, Silbestri GF. Signpost Open Access J. Org. Biomol. Chem. 2015; 3: 44 ; http://signpostejournals.com/ejournals/organic_and_biomolecular_chemistry/Home.aspx
  • 22 Roberts BA, Strauss CR. Acc. Chem. Res. 2005; 38: 653
  • 23 Namboodiri VV, Varma RS. Tetrahedron Lett. 2002; 43: 5381
  • 24 Namboodiri VV, Varma RS. Chem. Commun. 2002; 342
  • 25 Berthold H, Schotten T, Hönig H. Synthesis 2002; 1607
  • 26 González-Prieto R, Herrero S, Jiménez-Aparicio R, Morán E, Prado-Gonjal J, Priego JL, Schmidt R. Microwave Chemistry. Vol. 1. Cravotto G, Carnaroglio D. Walter de Gruyter; Berlin: 2017: 225-247
  • 27 We wondered about the effect of MW on ionic materials. This is a complex issue that can be related to the effect of MW on electrolytes. Owing to their strong localized electric fields, ions influence the solvent’s molecular interactions. In some cases, the presence of ions tends to decrease the real part of the dielectric permittivity, thus increasing the temperature. For a detailed discussion see: Stuerga D. Microwaves in Organic Synthesis. Vol. 1. De la Hoz A, Loupy A. Wiley-VCH; Weinheim: 2012: 1-56
  • 28 Horikoshi S, Serpone N. Microwaves in Organic Synthesis. Vol. 1. De la Hoz A, Loupy A. Wiley-VCH; Weinheim: 2012: 377
  • 29 Candioti LV, De Zan MM, Cámara MS, Goicoechea HC. Talanta 2014; 124: 123
  • 30 Myers RH, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed. John Wiley & Sons; Hoboken: 2016: 1-856
  • 31 Luong M, Domini CE, Silbestri GF, Chopa AB. J. Organomet. Chem. 2013; 723: 43
  • 32 Pal A, Shah S, Devi S. Mater. Chem. Phys. 2009; 114: 530
  • 33 Huang T, Xu XH. N. J. Mater. Chem. 2010; 20: 9867
  • 34 Nadagouda MN, Speth TF, Varma RS. Acc. Chem. Res. 2011; 44: 469
  • 35 Montgomery DC. Design and Analysis of Experiments. John Wiley & Sons; Hoboken: 2017. 9th ed. 614
  • 36 Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M. J. Hazard. Mater. 2005; 123: 187
  • 37 Orozco FD. A, Sousa AC, Domini CE, Araujo MC. U, Band BS. F. Ultrason. Sonochem. 2013; 20: 820
  • 38 Krossing I, Raabe I. Angew. Chem. Int. Ed. 2004; 43: 2066
    • 39a Yang M, Mallick B, Mudring AV. Cryst. Growth Des. 2014; 14: 1561
    • 39b Yang M, Mallick B, Mudring A. Cryst. Growth Des. 2013; 13: 3068
  • 40 Padma DK. Synth. React. Inorg. Met. Org. Chem. 1988; 18: 401
  • 41 Agel F, Pitsch F, Krull FF, Schulz P, Wessling M, Melin T, Wasserscheid P. Phys. Chem. Chem. Phys. 2011; 13: 725