Synthesis 2018; 50(24): 4905-4914
DOI: 10.1055/s-0037-1609916
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Functionalized 5-Amino-3(2H)-furanones via Base-Catalyzed Ring-Cleavage/Recyclization of 4-Cyano-3(2H)-furanones in the Presence of Water

Olga G. Volostnykh
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation   eMail: shemyakina@irioch.irk.ru
,
Olesya A. Shemyakina*
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation   eMail: shemyakina@irioch.irk.ru
,
Anton V. Stepanov
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation   eMail: shemyakina@irioch.irk.ru
,
Igor A. Ushakov
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation   eMail: shemyakina@irioch.irk.ru
,
Tatyana N. Borodina
A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation   eMail: shemyakina@irioch.irk.ru
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 08. Juni 2018

Accepted after revision: 19. Juli 2018

Publikationsdatum:
15. August 2018 (online)


Abstract

5-Alkyl/aryl/hetaryl-4-cyano-3(2H)-furanones undergo ring-cleavage/recyclization in the presence of water under mild conditions [MOH (M = Na, K), aqueous ethanol, 20–25 °C] to afford 4-acyl/aroyl/hetaroyl-5-amino-3(2Н)-furanones in 75–99% yields.

Supporting Information

 
  • References

    • 1a Slaughter JC. Biol. Rev. 1999; 74: 259
    • 1b Haung TT. Kirsch SF. In Targets in Heterocyclic Systems-Chemistry and Properties . Vol. 13. Attanasi OA. Spinelli D. Societa Chimica Italiana; Rome: 2009: 57
    • 2a Farine J.-P. Le Qvere J.-L. Duffy J. Semon E. Brossut R. Biosci. Biotechnol. Biochem. 1993; 57: 2026
    • 2b Choi S.-C. Zhang C. Moon S. Oh Y.-S. J. Microbiol. 2014; 52: 734
    • 2c Schauder S. Bassler BL. Genes Dev. 2001; 15: 1468
    • 3a Parker W. Raphael RA. Wilkinson DI. J. Chem. Soc. 1958; 3871
    • 3b Jackson RF. W. Raphael R. Tetrahedron Lett. 1983; 24: 2117
    • 3c Felman SW. Jirkovsky I. Memoli KA. Borella L. Wells C. Russell J. Ward J. J. Med. Chem. 1992; 35: 1183
    • 3d Villemin D. Jaffrès P.-A. Hachémi M. Tetrahedron Lett. 1997; 38: 537
    • 3e Reiter M. Turner H. Mills-Webb R. Gouverneur V. J. Org. Chem. 2005; 70: 8478
    • 4a Jerris PJ. Smith AB. III. J. Org. Chem. 1981; 46: 577
    • 4b Sakai T. Ito H. Yamawaki A. Takeda A. Tetrahedron Lett. 1984; 25: 2987
    • 4c Chimichi S. Boccalini M. Cosimelli B. Viola G. Vedaldi D. Dall’Acqua F. Tetrahedron Lett. 2002; 43: 7473
    • 4d Viola G. Vedaldi D. Dall’Acqua F. Basso G. Disarò S. Spinelli M. Cosimelli B. Boccalini M. Chimichi S. Chemisty & Biodiversity 2004; 4: 1265
    • 4e Chimichi S. Boccalini M. Cravotto G. Rosati O. Tetrahedron Lett. 2006; 47: 2405
    • 4f Crone B. Kirsch SF. J. Org. Chem. 2007; 72: 5435 , and references cited therein
    • 4g Chimichi S. Boccalini M. Salvador A. Dall’Acqua F. Basso G. Viola G. ChemMedChem 2009; 4: 769
    • 5a Raffauf RF. Huang P.-KC. Le Quesne PW. Levery SB. Brennan TF. J. Am. Chem. Soc. 1975; 97: 6884
    • 5b Le Quesne PW. Levery SB. Menachery MD. Brennan TF. Raffauf RF. J. Chem. Soc., Perkin Trans. 1 1978; 1572
    • 5c Takao K. Ochiai H. Hashizuka T. Koshimura H. Tadano K. Ogawa S. Tetrahedron Lett. 1995; 36: 1487
    • 5d Takao K. Ochiai H. Yoshida K. Hashizuka T. Koshimura H. Tadano K. Ogawa S. J. Org. Chem. 1995; 60: 8179
    • 5e Li Y. Hale KJ. Org. Lett. 2007; 9: 1267
    • 6a Kupchan SM. Sigel CW. Matz MJ. Gilmore CJ. Bryan RF. J. Am. Chem. Soc. 1976; 98: 2295
    • 6b Smith AB. III. Guaciaro MA. Schow SR. Wovkulich PM. Toder BH. Hall TW. J. Am. Chem. Soc. 1981; 103: 219
    • 6c Smith AB. III. Malamas MS. J. Org. Chem. 1982; 47: 3442
    • 6d Taylor MD. Smith AB. III. Furst GT. Gunasekara SP. Bevelle CA. Cordell GA. Farmworth NR. Kupchan SM. Uchida H. Branfman AR. Dailey RG. Jr. Sneden AT. J. Am. Chem. Soc. 1983; 105: 3177
    • 6e Schmeda-Hirschmann G. Razmilic I. Sauvain M. Moretti C. Muñoz V. Ruiz E. Balanza E. Fournet A. Phytother. Res. 1996; 10: 375
    • 6f Pertino M. Schmeda-Hirschmann G. Santos LS. Rodríguez J. A. Theoduloz C. Z. Naturforsch. 2007; 62b: 275
    • 7a Shao X. Tamm C. Tetrahedron Lett. 1991; 32: 2891
    • 7b Ishikawa M. Ninomiya T. J. Antibiot. 2008; 61: 692
    • 7c Ishikawa M. Ninomiya T. Akabane H. Kushida N. Tsujiuchi G. Ohyama M. Gomi S. Shito K. Murata T. Bioorg. Med. Chem. 2009; 17: 1457
    • 8a Chimichi S. Boccalini M. Cosimelli B. Dall’Acqua F. Viola G. Tetrahedron 2003; 59: 5215
    • 8b Rappai JP. Raman V. Unnikrishnan PA. Prathapan S. Thomas SK. Paulose CS. Bioorg. Med. Chem. Lett. 2009; 19: 764
  • 9 Mack RA. Zazulak WI. Radov LA. Baer JE. Stewart JD. Elzer PH. Kinsolving CR. Georgiev VS. J. Med. Chem. 1988; 31: 1910
    • 10a Silverstein FE. Faich G. Goldstein JL. Simon LS. Pincus T. Whelton A. Makuch R. Eisen G. Agrawal NM. Stenson WF. Burr AM. Zhao WW. Kent JD. Lefkowith JB. Verburg KM. Geis GS. J. Am. Med. Assoc. 2000; 284: 1247
    • 10b Shin SS. Byun Y. Lim KM. Choi JK. Lee K.-W. Moh JH. Kim JK. Jeong YS. Kim JY. Choi YH. Koh H.-J. Park Y.-H. Oh YI. Noh M.-S. Chung S. J. Med. Chem. 2004; 47: 792
    • 10c Shamshina JL. Snowden TS. Tetrahedron Lett. 2007; 48: 3767
  • 11 Carotti A. Carrieri A. Chimichi S. Boccalini M. Cosimelli B. Gnerre C. Carotti A. Carrupt P.-A. Testa B. Bioorg. Med. Chem. Lett. 2002; 12: 3551
  • 12 Woollard JMcK. R. Perry NB. Weavers RT. van Klink JW. Phytochemistry 2008; 69: 1313
  • 13 Smith AB. III. Levenberg PA. Jerris PJ. Scarborough RM. Jr. Wovkulich PM. J. Am. Chem. Soc. 1981; 103: 1501
  • 14 Winkler JD. Oh K. Asselin SM. Org. Lett. 2005; 7: 387
    • 15a Kato K. Nouchi H. Ishikura K. Takaishi S. Motodate S. Tanaka H. Okudaira K. Mochida T. Nishigaki R. Shigenobu K. Akita H. Tetrahedron 2006; 62: 2545
    • 15b Gogoi S. Argade NP. Tetrahedron 2006; 62: 2999
  • 16 Chen K. Shi G. Zhang W. Li H. Wang C. J. Am. Chem. Soc. 2016; 138: 14198
  • 17 He H. Qi C. Hu X. Ouyang L. Xiong W. Jiang H. J. Org. Chem. 2015; 80: 4957
    • 18a Inagaki S. Ukaku M. Chiba A. Takahashi F. Yoshimi Y. Morita T. Kawano T. J. Org. Chem. 2016; 81: 8363
    • 18b Inagaki S. Nakazato M. Fukuda N. Tamura S. Kawano T. J. Org. Chem. 2017; 82: 5583
    • 18c Inagaki S. Sato A. Sato H. Tamura S. Kawano T. Tetrahedron Lett. 2017; 58: 4872
  • 19 Zhou J. Bai L. Liang G. Chen Y. Gan Z. Wang W. Zhoua H. Yu Y. RSC Adv. 2017; 7: 39885
    • 20a Kirsch SF. Binder JT. Liebért C. Menz H. Angew. Chem. Int. Ed. 2006; 45: 5878
    • 20b Binder TJ. Crone B. Kirsch SF. Liébert C. Menz H. Eur. J. Org. Chem. 2007; 1636
    • 20c Bunnelle EM. Smith CR. Lee SK. Singaram SW. Rhodes AJ. Sarpong R. Tetrahedron 2008; 64: 7008
    • 20d Silva F. Reiter M. Mills-Webb R. Sawicki M. Klar D. Bensel N. Wagner A. Gouverneur V. J. Org. Chem. 2006; 71: 8390
    • 20e Marson CM. Edaan E. Morrell JM. Coles SJ. Hursthouse MB. Davies DT. Chem. Commun. 2007; 2494
    • 20f Liu Y. Liu M. Guo S. Tu H. Zhou Y. Gao H. Org. Lett. 2006; 8: 3445
    • 20g Egi M. Azechi K. Saneto M. Shimizu K. Akai S. J. Org. Chem. 2010; 75: 2123
    • 21a Trofimov BA. Shemyakina OA. Mal’kina AG. Ushakov IA. Kazheva ON. Alexandrov GG. Dyachenko OA. Org. Lett. 2010; 12: 3200
    • 21b Shemyakina OA. Mal’kina AG. Nosyreva VV. Ushakov IA. Trofimov BA. ARKIVOC 2012; (viii): 319
    • 21c Shemyakina OA. Stepanov AV. Volostnykh OG. Mal’kina AG. Ushakov IA. Trofimov BA. Russ. J. Org. Chem. 2014; 50: 1617
    • 21d Mal’kina AG. Volostnykh OG. Petrushenko KB. Shemyakina OA. Nosyreva VV. Ushakov IA. Trofimov BA. Tetrahedron 2013; 69: 3714
    • 21e Mal’kina AG. Volostnykh OG. Stepanov AV. Ushakov IA. Petrushenko KB. Trofimov BA. Synthesis 2013; 45: 3435
    • 21f Trofimov BA. Stepanov AV. Mal’kina AG. Volostnykh OG. Shemyakina OA. Ushakov IA. Synth. Commun. 2015; 45: 2718
    • 21g Mal’kina AG. Shemyakina OA. Stepanov AV. Volostnykh OG. Ushakov IA. Sobenina LN. Borodina TN. Smirnov VI. Trofimov BA. Synthesis 2016; 48: 271
  • 22 Amslinger S. Lindner SK. Synthesis 2011; 2671
  • 23 Cao J. Sun K. Dong S. Lu T. Dong Y. Du D. Org. Lett. 2017; 19: 6724
    • 24a Huang A.-C. Chung J.-G. Kuo S.-C. Lu H.-F. Lin T.-P. In Vivo 2007; 21: 227
    • 24b Wands JR. de la Monte S. Aihara A. Olsen MJ. Thomas J.-M. US Patent US9771356 B2, 2017
    • 25a Ward CE. Lo WC. Pomidor PB. Tisdell FE. Ho AW. W. Chiu CL. Tuck DM. Bernando CR. Fong PJ. Omid A. Buteau FA. In Synthesis and Chemistry of Agrochemicals, ACS Symposium Series No. 35. Baker DR. Fenyes JG. Moberg WK. Barrington C. American Chemical Society; Washington DC: 1987: 65-73
    • 25b Sandmann G. Ward CE. Lo WC. Nagy JO. Boeger P. Plant Physiol. 1990; 94: 476
    • 25c Matiadis D. Prousis KC. Igglessi-Markopoulou O. Molecules 2009; 14: 3914
  • 26 Sheldrick GM. Acta Crystallogr., Sect. D 2008; 64: 112