Synlett 2018; 29(15): 2061-2065
DOI: 10.1055/s-0037-1609912
letter
© Georg Thieme Verlag Stuttgart · New York

Nitrile Hydration Reaction Using Copper Iodide/Cesium Carbonate/DBU in Nitromethane–Water

Jun Kuwabara
a   Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan   Email: yoshimae@gifu-u.ac.jp
,
Yoshiharu Sawada
b   Division of Instrumental Analysis, Life Science Research Center, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
,
Mitsuhiro Yoshimatsu*
a   Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan   Email: yoshimae@gifu-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 26 May 2018

Accepted after revision: 27 June 2018

Publication Date:
23 July 2018 (online)


Abstract

The catalytic nitrile hydration (amide formation) in a copper iodide/cesium carbonate/1,8-diazabicyclo[5.4.0]undec-7-ene/nitromethane–water system is described. The protocol is robust and reliable; it can be applied to a broad range of substrates with high chemoselectivity.

Supporting Information

 
  • References and Notes

    • 1a García-Álvarez R. Crochet P. Cadierno V. Green Chem. 2013; 15: 46
    • 1b Kukushkin VY. Pombeiro AJ. L. Inorg. Chim. Acta 2005; 358: 1
    • 2a Andries K. Verhasselt P. Guillemont J. Gohlmann HW. H. Neefs J.-M. Winkler H. Van Gestel J. Timmerman P. Zhu M. Lee E. Williams P. de Chaffoy D. Huitric E. Lounis N. Jarlier V. Science 2005; 307: 223
    • 2b Caminero JA. Sotgiu G. Zumla A. Migliori GB. Lancet Infect. Dis. 2010; 10: 621
    • 2c Zumla A. Nahid P. Cole ST. Nat. Rev. Drug Discovery 2013; 12: 388
    • 2d Battilocchio C. Hawkins JM. Ley SV. Org. Lett. 2014; 16: 1060
  • 3 Carey JS. Laffan D. Thomson C. Williams MT. Org. Biomol. Chem. 2006; 4: 2337
  • 4 Acid- and baes-promoted hydrolysis of nitriles to amides: Benz G. Synthesis of Amides and Related Compounds. In Comprehensive Organic Synthesis . Vol 6. Trost BM. Fleming I. Winterfeldt E. Pergamon Press; Oxford: 1991: 381
    • 5a Murahashi S.-I. Naota T. Saito E. J. Am. Chem. Soc. 1986; 108: 7846
    • 5b Mori K. Yamaguchi K. Mizukami T. Ebitani K. Kaneda K. Chem. Commun. 2001; 461
    • 5c Cadierno V. Francos J. Gimeno J. Chem. Eur. J. 2008; 14: 6601
    • 5d Polshettiwar V. Varma RS. Chem. Eur. J. 2009; 15: 1582
    • 5e Baig RB. N. Varma RS. Chem. Commun. 2012; 48: 6220
    • 5f Garcia-Álvarez R. Díez J. Crochet P. Cadierno V. Organometallics 2011; 30: 5442
    • 5g Lee W.-C. Frost BJ. Green Chem. 2012; 14: 62
    • 5h Tomás-Mendivil E. Suarez FJ. Diez J. Cadierno V. Chem. Commun. 2014; 50: 9661
    • 5i Tomás-Mendivil E. Cadierno V. Menéndez MI. López R. Chem. Eur. J. 2015; 21: 16874

      Cu(0):
    • 6a Ravindranathan M. Kalyanam N. Sivaram S. J. Org. Chem. 1982; 47: 4812

    • CuI in pure water:
    • 6b Li Z. Wang L. Zhou X. Adv. Synth. Catal. 2012; 354: 584

    • C–H activation/amidation:
    • 6c Xie W. Yoon JH. Chang S. J. Am. Chem. Soc. 2016; 138: 12605

      Review:
    • 7a Taylor RJ. K. Reid M. Foot J. Raw SA. Acc. Chem. Res. 2005; 38: 851
    • 7b Liu KT. Shih M.-H. Huang H.-W. Hu C.-J. Synthesis 1988; 715
    • 7c Yamaguchi K. Wang Y. Kobayashi H. Mizuno N. Chem. Lett. 2012; 41: 574
    • 7d Yamaguchi K. Wang Y. Mizuno N. Chem. Lett. 2012; 41: 633
    • 8a Subramanian T. Pitchumani K. Catal. Commun. 2012; 29: 109
    • 8b Singh K. Sarbajna A. Dutta I. Pandey P. Bera JK. Chem. Eur. J. 2017; 23: 7761
    • 9a Hirano T. Uehara K. Kamata K. Mizuno N. J. Am. Chem. Soc. 2012; 134: 6425
    • 9b Shimizu K. Kubo T. Satsuma A. Kamachi T. Yoshizawa K. ACS Catal. 2012; 2: 2467
    • 10a Ahmed TJ. Fox BR. Knapp SM. M. Yelle RB. Juliette JJ. Tyler DR. Inorg. Chem. 2009; 48: 7828
    • 10b Breno KL. Pluth MD. Tyler DR. Organometallics 2003; 22: 1203
    • 11a Ramón RS. Marion N. Nolan SP. Chem. Eur. J. 2009; 15: 8695
    • 11b Liu Y.-M. He L. Wang M.-M. Cao Y. He H.-Y. Fan K.-N. ChemSusChem 2012; 5: 1392
    • 11c Mitsudome T. Mikami Y. Mori H. Arita S. Mizugaki T. Jitsukawa K. Kaneda K. Chem. Commun. 2009; 45: 3258
  • 12 Tamura M. Wakasugi H. Shimizu K. Satsuma A. Chem. Eur. J. 2011; 17: 11428
  • 13 Marcé P. Lynch J. Blacker AJ. Williams JM. J. Chem. Commun. 2016; 52: 1436
  • 14 Kuwabara J. Sawada Y. Yoshimatsu M. Org. Lett. 2018; 20: 1130
  • 15 Tamura M. Sawabe K. Tomishige K. Satsuma A. Shimizu K. ACS Catal. 2015; 5: 20
  • 16 Nitrile hydration without water; selective nitrile hydration to amides for p-carbomethoxybenzamide: Kang D. Lee J. Lee H.-Y. Org. Synth. 2012; 89: 66
  • 17 Typical Procedure for the Nitrile Hydration of Tolunitrile (1a) To a nitromethane (0.10 mL) solution of 4-methylbenzonitrile (1a, 30 mg, 0.256 mmol) were added H2O (1.0 mL), DBU (78 mg, 0.512 mmol), copper(I) iodide (9.8 mg, 0.0512 mmol), and cesium(I) carbonate (42 mg, 0.128 mmol) at room temperature. The reaction mixture was heated at 100 °C for 1 h and then poured into water (50 mL). The organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layer was dried over MgSO4. The solvent was removed under reduced pressure. The residue was purified by preparative TLC on silica gel eluting with AcOEt–n-hexane (1:1) to give 4-methylbenzamide (2a, 32 mg, 92%) as pale yellow powders. 1H NMR (400 MHz, CDCl3): δ = 2.40 (3 H, s, CH3), 6.10 (2 H, br s, NH), 7.25 (2 H, d, J = 8.2 Hz, ArH), 7.71 (2 H, d, J = 8.2 Hz, ArH).