Synlett 2018; 29(16): 2137-2140
DOI: 10.1055/s-0037-1609869
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Conformational Analysis of 10-Mesitylanthracene-1,8-diyl Oligomers

Shinji Toyota*
a  Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan   Email: stoyota@chem.titech.ac.jp
,
Toyoaki Saibara
b  Department of Chemistry, Faculty of Science, Okayama University of Science, 1–1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
,
Kei Fujise
a  Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan   Email: stoyota@chem.titech.ac.jp
,
Tomohiro Oki
b  Department of Chemistry, Faculty of Science, Okayama University of Science, 1–1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
,
Tetsuo Iwanaga
b  Department of Chemistry, Faculty of Science, Okayama University of Science, 1–1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
› Author Affiliations
This work was partly supported by JSPS KAKENHI for Scientific Research (C) Grant Number 26410060, the Izumi Science and Technology Foundation (ST), and the Grant for Promotion of OUS Research Projects (TI).
Further Information

Publication History

Received: 28 April 2018

Accepted after revision: 12 June 2018

Publication Date:
19 July 2018 (online)


Published as part of the Cluster Atropisomerism

Abstract

Oligomers consisting of 10-mesitylanthracene-1,8-diyl units were synthesized by Ni-mediated coupling of the corresponding dibromide as new oligoarene compounds. The structures and properties of these oligomers were investigated by NMR and electronic spectroscopy. Conformational analyses with the aid of DFT calculations revealed that each biaryl axis adopted a nearly perpendicular conformation, and the trimers and tetramers existed as a mixture of diastereomeric conformers.

Supporting Information

 
  • References and Notes

  • 2 Christie GH. Kenner J. J. Chem. Soc. 1922; 121: 614
    • 3a Adams R. Yuan H. Chem. Rev. 1933; 12: 261
    • 3b Krow G. Top. Stereochem. 1970; 5: 31
    • 3c Mason SF. Seal RH. Roberts DR. Tetrahedron 1974; 30: 1671
    • 5a Pereira MM. Calvete MJ. F. Carrilho RN. B. Abreu AR. Chem. Soc. Rev. 2013; 42: 6990
    • 5b Brunel JM. Chem. Rev. 2005; 105: 857
    • 5c Berthod M. Mignani G. Woodward G. Lemaire M. Chem. Rev. 2005; 105: 1801
    • 5d Tsubaki K. Org. Biomol. Chem. 2007; 5: 2179
    • 6a Lauer K. Oda R. Miyawaki M. J. Prakt. Chim. 1937; 148: 310
    • 6b Bell F. Waring DH. J. Chem. Soc. 1949; 1579
    • 6c Badger GM. Jefferies PR. Kimber RW. L. J. Chem. Soc. 1957; 1837
    • 6d Ôi S. Shijo M. Miyano S. Chem. Lett. 1990; 19: 59
    • 7a Schwartz LH. Koukotas C. Kukkola P. Yu CS. J. Org. Chem. 1986; 51: 995
    • 7b Toyota S. Shimasaki T. Tanifuji N. Wakamatsu K. Tetrahedron: Asymmetry 2003; 14: 1623
    • 7c Toyota S. Shimasaki T. Ueda T. Tanifuji N. Wakamatsu K. Bull. Chem. Soc. Jpn. 2004; 77: 2065
    • 7d Toyota S. Shimasaki T. Hirano S. Kuga M. Toda F. Chirality 2008; 20: 295
  • 8 Toyota S. Miyaji R. Yamamoto Y. Inoue M. Wakamatsu K. Iwanaga T. Eur. J. Org. Chem. 2015; 7648
  • 10 Fitts DD. Siegel M. Mislow K. J. Am. Chem. Soc. 1958; 80: 480
    • 11a Toyota S. Pure Appl. Chem. 2012; 84: 917
    • 11b Toyota S. Chem. Lett. 2011; 40: 12
    • 11c Toyota S. Ikeda H. Iwanaga T. ChemPlusChem 2017; 82: 957
    • 12a Nori-shargh D. Asadzadeh S. Ghanizadeh F.-R. Deyhimi F. Amini MM. Jameh-Bozorghi S. J. Mol. Struct. THEOCHEM 2005; 717: 41
    • 12b Nikitin K. Müller-Bunz H. Ortin Y. Muldoon J. McGlinchey MJ. Org. Lett. 2011; 13: 256
  • 13 For conformational analysis of 1,8-diaylanthracenes, see: Lunazzi L. Mancinelli M. Mazzanti A. J. Org. Chem. 2007; 72: 5391
  • 14 Toyota S. Oki T. Inoue M. Wakamatsu K. Iwanaga T. Chem. Lett. 2015; 44: 978
  • 15 Yoshikawa M. Imigi S. Wakamatsu K. Iwanaga T. Toyota S. Chem. Lett. 2013; 42: 559
    • 16a Filatov MA. Guilard R. Harvey PD. Org. Lett. 2010; 12: 196
    • 16b Perez-Trujillo M. Maestre I. Jaime C. Alvarez-Larena A. Piniella JF. Virgili A. Tetrahedron: Asymmetry 2005; 16: 3084
  • 17 Preliminary attempts at Ni-mediated coupling using 1,8-diiodo-9-mesitylanthracene or 1,8-dichloro-9-mesitylanthracene (ref. 14) were unsuccessful. Inoue M. Iwanaga T. Toyota S. Bull. Chem. Soc. Jpn. 2015; 88: 1591
  • 18 Yamamoto T. Bull. Chem. Soc. Jpn. 2010; 83: 431
  • 19 Synthesis of Oligomers An: A solution of 2,2′-bipyridine (86.3 mg, 0.552 mmol), 1,5-cyclooctadiene (68 μL, 0.553 mmol), and Ni(cod)2 (155 mg, 0.564 mmol) in a degassed mixture of toluene (2 mL) and DMF (2 mL) was stirred for 30 min at 80 °C under Ar. To the solution was slowly added a solution of 3 (101 mg, 0.223 mmol) in degassed toluene (5 mL). The mixture was then heated at 80 °C for 19 h under Ar. After cooling to r.t., the mixture was treated with aq HCl (5 mL, 1.0 M). After addition of sat. aq NaCl (100 mL), the mixture was extracted with toluene (3 × 100 mL). The combined organic extracts were dried over Na2SO4, filtered and evaporated to give a mixture of oligomers (87.5 mg). Components of the crude product were separated by chromatography (silica N60, hexane/CH2Cl2, 5:1) and then by recycling GPC (CHCl3) to give A2 (6.7 mg, 10.2%), A3 (5.6 mg, 8.5%), A4 (5.1 mg, 7.7%), and other large oligomers (ca. 22 mg) as yellow solids. A2: mp 245–246 °C. 1H NMR (400 MHz, CDCl3): δ = 1.80 (s, 6 H), 1.89 (s, 6 H), 2.50 (s, 6 H), 7.14 (s, 2 H), 7.17 (s, 2 H), 7.28 (m, 4 H), 7.50 (m, 4 H), 7.60 (d, J = 6.6 Hz, 2 H), 7.68 (m, 4 H), 8.13 (s, 2 H), 13C NMR (100 MHz, CDCl3): δ = 20.29, 20.36, 21.45, 125.10, 125.21, 125.49, 125.85, 125.93, 126.14, 127.48, 128.47, 129.20, 129.74, 130.15, 131.15, 131.65, 131.74, 134.95, 136.05, 137.30, 137.83, 139.21. HRMS–FAB: m/z calcd for C46H38 [M]+: 590.2974; found: 590.2939. All other experimental procedures and characterization data of A2 and other oligomers can be found in the Supporting Information.
    • 20a Zhao T. Truhlar DG. Acc. Chem. Res. 2008; 41: 157
    • 20b Toyota S. Wakamatsu K. Kawakami T. Iwanaga T. Bull. Chem. Soc. Jpn. 2015; 88: 283
  • 21 We obtained another unstable energy-minimum structure, the dihedral angle in which was –108.8° (or +108.8°).
  • 22 For the calculation of anti-3′ and syn-3′, we obtained only one energy-minimum structure, even though we started the calculations from various conformations.