Synlett 2018; 29(16): 2141-2146
DOI: 10.1055/s-0037-1609868
cluster
© Georg Thieme Verlag Stuttgart · New York

Atropisomerism in the 2,3,4,5-Tetrahydro-1H-1,5-benzodiazepine Nucleus: Effects of Central Chirality at C3 on the N-Mesylation Reaction

Hidetsugu Tabata*
a  Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan   Email: h-tabata@pharm.teikyo-u.ac.jp   Email: natsu@pharm.teikyo-u.ac.jp
,
Yuka Tsuji
a  Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan   Email: h-tabata@pharm.teikyo-u.ac.jp   Email: natsu@pharm.teikyo-u.ac.jp
,
Tetsuya Yoneda
a  Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan   Email: h-tabata@pharm.teikyo-u.ac.jp   Email: natsu@pharm.teikyo-u.ac.jp
,
Tomohiko Tasaka
b  Affinity Science Corporation, 1-11-1 Nishigotanda, Shinagawa-ku, Tokyo 141-0031, Japan
,
Tetsuta Oshitari
a  Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan   Email: h-tabata@pharm.teikyo-u.ac.jp   Email: natsu@pharm.teikyo-u.ac.jp
,
Hideyo Takahashi*
c  Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan   Email: hide-tak@rs.tus.ac.jp
,
Hideaki Natsugari*
a  Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan   Email: h-tabata@pharm.teikyo-u.ac.jp   Email: natsu@pharm.teikyo-u.ac.jp
b  Affinity Science Corporation, 1-11-1 Nishigotanda, Shinagawa-ku, Tokyo 141-0031, Japan
› Author Affiliations
This work was supported in part by Grants-in-Aid for Scientific ­Research (C) (25460154 and 16K08326) and a Grant-in-Aid for Young Scientists (B) (25860091) from the Japan Society for the Promotion of Science. H.T. thanks the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2013–2017) for financial support.
Further Information

Publication History

Received: 28 April 2018

Accepted after revision: 29 May 2018

Publication Date:
12 July 2018 (online)


Published as part of the Cluster Atropisomerism

Abstract

The mesylation reaction of the 1,3-dimethyl-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepine nucleus was investigated in detail. Two diastereomers (A and B) of 5-mesyl-1,3-dimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepines, originating from chirality at C3 and at the Ar–N(SO2) axis were formed, among which isomers of the derivative with a methyl group at C6 (R = CH3) were separable at room temperature. A and B had chair-like and boat-like conformations, respectively, in which the C3-methyl group adopts a pseudoequatorial arrangement. Furthermore, A and B were shown to be the thermodynamically and ­kinetically controlled products, respectively.

Supporting Information

 
  • References and Notes

  • 1 New address: H. Natsugari, Faculty of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 112-0033, Japan.

    • For recent review articles on seven-membered-ring heterocycles, see:
    • 2a Ryan JH. Hyland C. Meyer AG. Smith JA. Yin J.-X. Prog. Heterocycl. Chem. 2012; 24: 493
    • 2b Ramig K. Tetrahedron 2013; 69: 10783

      For recent review articles on the relationship between atropisomerism and biological activity, see:
    • 3a Clayden J. Moran WJ. Edwards PJ. LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
    • 3b LaPlante SR. Edwards PJ. Fader LD. Jakalian A. Hucke O. ChemMedChem 2011; 6: 505
    • 3c LaPlante SR. Fader LD. Fandrick KR. Fandrick DR. Hucke O. Kemper R. Miller SP. F. Edwards PJ. J. Med. Chem. 2011; 54: 7005
    • 3d Zask A. Murphy J. Ellestad GA. Chirality 2013; 25: 265
    • 3e Kumarasamy E. Raghunathan R. Sibi MP. Sivaguru J. Chem. Rev. 2015; 115: 11239
    • 4a Lee S. Kamide T. Tabata H. Takahashi H. Shiro M. Natsugari H. Bioorg. Med. Chem. 2008; 16: 9519
    • 4b Tabata H. Akiba K. Lee S. Takahashi H. Natsugari H. Org. Lett. 2008; 10: 4871
    • 4c Tabata H. Suzuki H. Akiba K. Takahashi H. Natsugari H. J. Org. Chem. 2010; 75: 5984
    • 4d Tabata H. Nakagomi J. Morizono D. Oshitari T. Takahashi H. Natsugari H. Angew. Chem. Int. Ed. 2011; 50: 3075
    • 4e Tabata H. Wada N. Takada Y. Nakagomi J. Miike T. Shirahase H. Oshitari T. Takahashi H. Natsugari H. Chem. Eur. J. 2012; 18: 1572
    • 4f Tabata H. Yoneda T. Oshitari T. Takahashi H. Natsugari H. J. Org. Chem. 2013; 78: 6264
    • 4g Yoneda T. Tabata H. Nakagomi J. Tasaka T. Oshitari T. Takahashi H. Natsugari H. J. Org. Chem. 2014; 79: 5717
    • 4h Yoneda T. Tabata H. Tasaka T. Oshitari T. Takahashi H. Natsugari H. J. Med. Chem. 2015; 58: 3268
    • 4i Tabata H. Yoneda T. Ito S. Tasaka T. Oshitari T. Takahashi H. Natsugari H. J. Org. Chem. 2016; 81: 3136
    • 4j Tabata H. Yoneda T. Oshitari T. Takahashi H. Natsugari H. J. Med. Chem. 2017; 60: 4503
  • 5 The terms aS and aR (chiral axis nomenclature) correspond to P and M (helix nomenclature), respectively.

    • For examples of sulfonamide compounds [biological activity (a and b) and chemistry] see:
    • 6a Watanabe M. Koike H. Ishiba T. Okada T. Seo S. Hirai K. Bioorg. Med. Chem. 1997; 5: 437
    • 6b Nishida H. Hasuoka A. Arikawa Y. Kurasawa O. Hirase K. Inatomi N. Hori Y. Sato F. Tarui N. Imanishi A. Kondo M. Takagi T. Kajino M. Bioorg. Med. Chem. 2012; 20: 3925
    • 6c Parkin A. Collins A. Gilmore CJ. Wilson CC. Acta Crystallogr., Sect. B 2008; 64: 66

      For recent publications from the Merck group on N-sulfonyl derivatives of pyrido- and benzo-fused tricyclic diazepine (MK-7725) as a bombesin receptor subtype 3 agonist in which atropisomerism was first disclosed as an interesting unusual chirality: see
    • 7a Welch CJ. Gong X. Schafer WA. Chobanian HR. Lin LS. Biba M. Liu P. Guo Y. Beard A. Chirality 2009; 21: 105
    • 7b Liu P. Lanza TJ. Jr. Chioda M. Jones C. Chobanian HR. Guo Y. Chang L. Kelly TM. Kan Y. Palyha O. Guan X.-M. Marsh DJ. Metzger JM. Ramsay K. Wang S.-P. Strack AM. Miller R. Pang J. Lyons K. Dragovic J. Ning JG. Schafer WA. Welch CJ. Gong X. Gao Y.-D. Hornak V. Ball RG. Tsou N. Reitman ML. Wyvratt MJ. Nargund RP. Lin LS. ACS Med. Chem. Lett. 2011; 2: 933
    • 7c Chobanian HR. Guo Y. Liu P. Lanza TJ. Jr. Chioda M. Chang L. Kelly TM. Kan Y. Palyha O. Guan X.-M. Marsh DJ. Metzger JM. Raustad K. Wang S.-P. Strack AM. Gorski JN. Miller R. Pang J. Lyons K. Dragovic J. Ning JG. Schafer WA. Welch CJ. Gong X. Gao Y.-D. Hornak V. Reitman ML. Nargund RP. Lin LS. Bioorg. Med. Chem. 2012; 20: 2845
  • 8 Cohen VI. Jin B. Reba RC. J. Heterocycl. Chem. 1993; 30: 835
  • 9 Note that, according to nomenclature rules, the atom numbering for 57 differs from for 1 and 2.
  • 10 Estimated from the Boltzmann equation.
  • 11 For determination of ΔG values by VT NMR, see: Boiadjiev SE. Lightner DA. Tetrahedron 2002; 58: 7411
  • 12 Although compound 2B is the major product in the mesylation reaction at r.t. for 6 h in pyridine, the ratio of 2A/2B (1:2.6) might not reflect the exact product ratio of the reaction because, presumably, 2B was partially converted into 2A during the reaction.
  • 13 For determination of ΔG values, see: Petit M. Lapierre AJ. B. Curran DP. J. Am. Chem. Soc. 2005; 127: 14994
  • 14 For detailed computational studies on 2A/2B, see the Supporting Information.

    • A similar tendency was reported in the conformational analysis of methyl (S)-lactate by DFT calculations in the gas phase and solution (methanol); see:
    • 15a Foresman JB. Frisch Æ. Exploring Chemistry with Electronic Structure Methods . Gaussian Inc; Wallingford: 2015

    • The SMD solvation model was used to predict the free energy in solution; see:
    • 15b Marenich AV. Cramer CJ. Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 16 For general experimental methods, see the Supporting Information.
  • 17 5-Mesyl-1,3-Dimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine (1) DMAP (21 mg, 0.17 mmol) and MsCl (0.13 mL, 1.72 mmol) were added to a stirred solution of 7a (61 mg, 0.35 mmol) in pyridine (3.5 mL) at 0 °C under argon. The mixture was stirred at 25 °C for 18 h and then the solvent was evaporated at 25 °C. H2O (6.0 mL) and EtOAc (10 mL) were added to the residue, and the mixture was extracted with EtOAc (10 × 3 mL). The extracts were t washed with water, dried, and concentrated. The concentrate was purified by column chromatography [silica gel, EtOAc–hexane (1:5)] to give colorless crystals; yield: 68 mg (78%); mp 92–94 °C. IR (ATR): 2897, 1327 cm–1. 1H NMR (600 MHz, CD2Cl2): δ = 0.86 (d, J = 6.6 Hz, 3 H), 2.15 (br s, 1 H), 2.51 (br s, 1 H), 2.74–2.90 (m, 1 H), 2.85 (s, 3 H), 2.88 (s, 3 H), 2.97–2.99 (m, 1 H), 4.08 (br s, 1 H), 6.98–7.02 (m, 2 H), 7.26–7.30 (m, 1 H), 7.41 (dd, J = 1.0, 7.7 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 15.6, 32.9, 40.0, 42.5, 54.0, 62.1, 117.9, 122.2, 129.2, 131.3, 131.9. HRMS (ESI): m/z [M + H]+ calcd for C12H19N2O2S: 255.1162; found: 255.1164. 5-Mesyl-1,3,6-trimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine (2) In a similar manner to the synthesis of 1 from 7a described above, compound 2 was prepared from 7b, except that the reaction was conducted for 6 h at 25 °C instead of 18 h at 25 °C and gave separable diastereomers of 2 (2A and 2B) in a ratio of 1:2.6 in 66% yield. These diastereomers were separated by column chromatography [silica gel, EtOAc–hexane (1:5)]. (aS*,3S*)-5-Mesyl-1,3,6-trimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine (2A) Colorless crystals; yield: 24.5 mg (47.7%); mp 133–135 °C; TLC: Rf  = 0.38 (silica gel, 25% EtOAc–hexane). IR (ATR): 2892, 1322 cm–1. 1H NMR (600 MHz, CD2Cl2): δ = 0.77 (d, J = 6.3 Hz, 3 H), 2.25 (dd, J = 10.9, 13.3 Hz, 1 H), 2.35–2.40 (m, 1 H), 2.37 (s, 3 H), 2.41 (dd, J = 12.1, 14.0 Hz, 1 H), 2.86 (s, 3 H), 2.92 (s, 3 H), 3.04 (ddd, J = 1.6, 3.6, 13.3 Hz, 1 H), 4.25 (ddd, J = 1.6, 3.5, 14.0 Hz, 1 H), 6.92 (d, J = 7.8 Hz, 1 H), 6.94 (d, J = 7.8 Hz, 1 H), 7.18 (dd, J = 7.8, 7.8 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 19.0, 34.3, 34.9, 39.3, 50.3, 120.5, 129.1, 129.4, 130.1, 142.0, 143.2, 170.8. HRMS (ESI): m/z [M + H]+ calcd for C13H21N2O2S: 269.1318; found: 269.1319.(aR*,3S*)-5-Mesyl-1,3,6-trimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine (2B) Colorless crystals; yield: 9.4 mg (18.3%); mp 127–130 °C; TLC: Rf  = 0.31 [silica gel, 25% EtOAc–hexane]. IR (ATR): 2876, 1324 cm–1. 1H NMR (600 MHz, CD2Cl2): δ = 0.92 (d, J = 6.7 Hz, 3 H), 1.59–1.66 (m, 1 H), 2.34 (s, 3 H), 2.65 (ddd, J = 1.5, 4.0, 10.9 Hz, 1 H), 2.75 (s, 3 H), 2.89 (s, 3 H), 2.91 (dd, J = 10.9, 12.4 Hz, 1 H), 3.40 (dd, J = 11.9, 12.4 Hz, 1 H), 3.47 (ddd, J = 1.5, 4.2, 12.4 Hz, 1 H), 6.80 (d, J = 7.8 Hz, 1 H), 6.89 (d, J = 7.7 Hz, 1 H), 7.18 (dd, J = 7.7, 7.8 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 15.3, 18.3, 30.0, 37.8, 39.8, 52.1, 60.6, 123.7, 128.5, 140.5, 147.5, 155.5. HRMS (ESI): m/z [M + H]+ calcd for C13H21N2O2S: 269.1318; found: 269.1319.
  • 18 Crystal Data for 1, 2A, and 2B All measurements were made on a RIGAKU RAXIS RAPID imaging-plate area detector with graphite monochromated ­Cu Kα radiation. The data were collected at a temperature of –100 °C. The structure was solved by the SIR92 direct method and expanded by using Fourier techniques. The nonhydrogen atoms were refined anisotropically. All calculations were performed by using the CrystalStructure crystallographic software package except for the refinement, which was performed by using SHELXL97 (See Ref. 19). Crystal data of 1 (see Ref. 20): C12H18N2O2S; mp 92–94 °C, M r = 254.35, Cu Kα (λ = 1.54187 Å), monoclinic, P21/n, colorless prism: 0.25 × 0.20 × 0.05 mm, crystal dimensions: a = 7.83330(14) Å, b = 9.04486(16) Å, c = 18.1712(3) Å, β = 91.5053(10)°, T = 173 K, Z = 4, V = 1287.01(4) Å3, D calc = 1.313 g/cm3, μCu Kα = 21.802 cm–1, F000 = 544.00, GOF = 1.063, R int = 0.0376, R1  = 0.0389, wR2  = 0.1016. Crystal data of 2A (see Ref. 20): C13H20N2O2S: mp 133–135 °C, M r = 268.37, Cu Kα (λ = 1.54187 Å), monoclinic, P21/n, colorless prism: 0.40 × 0.35 × 0.20 mm, crystal dimensions: a = 8.38672(15) Å, b = 8.82991(16) Å, c = 18.4671(4) Å, β = 92.8791(13)°, T = 173 K, Z = 4, V = 1365.84(4) Å3, D calc = 1.305 g/cm3, μCu Kα = 20.811 cm–1, F000 = 576.00, GOF = 1.014, R int = 0.0410, R1  = 0.0348, wR2  = 0.0906. Crystal data of 2B (see Ref. 20): C13H20N2O2S: mp 127–130 °C, M r = 268.37, Cu Kα (λ = 1.54187 Å), triclinic, P-1, colorless prism: 0.35 × 0.20 × 0.08 mm, crystal dimensions a = 8.33(4) Å, b = 8.71(6) Å, c = 9.82(5) Å, α = 96.87(11)°, β = 106.76(8)°, γ = 94.85(14)°, T = 173 K, Z = 4, V = 672(7) Å3, D calc = 1.325 g/cm3, μCu Kα = 21.137 cm–1, F000 = 288.00, GOF = 0.950, R int = 0.1560, R1  = 0.0719, wR2  = 0.1790.
  • 19 Sheldrick GM. SHELX97 [Includes SHELXS97, SHELXL97 and CIFTAB]: Programs for Crystal Structure Analysis (Release 97-2) . Institüt für Anorganische Chemie der Universität; Göttingen: 1998
  • 20 CCDC 1837601, 1837602 and 1837601 contain the supplementary crystallographic data for compounds 1, 2A, and 2B, respectively. The data can be obtained free of charge from The ­Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.