Synthesis 2018; 50(13): 2567-2576
DOI: 10.1055/s-0037-1609729
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Decarboxylative N-3-ortho-C–H Acylation of 1,4-Disubstituted 1,2,3-Triazoles with α-Oxocarboxylic Acids

Xinyuan Ma
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China   Email: hmxiekai@163.com
,
Hongtai Huang
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China   Email: hmxiekai@163.com
,
Jianhua Yang
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China   Email: hmxiekai@163.com
,
Xuepu Feng
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China   Email: hmxiekai@163.com
,
Kai Xie*
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China   Email: hmxiekai@163.com
› Author Affiliations

This work was supported by National Natural Science Foundation of China (21662020) and
by grants from the personnel training program of Kunming University of Science and Technology (KKSY201307094).
Further Information

Publication History

Received: 21 January 2018

Accepted after revision: 27 March 2018

Publication Date:
14 May 2018 (online)


Abstract

An efficient palladium-catalyzed decarboxylative selective C–H acylation is reported using α-oxocarboxylic acids as the acyl source directed by 1,2,3-triazole ring. This method provides a novel access to various 1,2,3-triazole derivatives bearing diaryl ketone skeleton.

Supporting Information

 
  • References

  • 2 Zhang J.-J. Cheng Y.-B. Duan X.-H. Chin. J. Chem. 2017; 35: 311
    • 3a Myers AG. Tanaka D. Mannion MR. J. Am. Chem. Soc. 2002; 124: 11250
    • 3b Tanaka D. Myers AG. Org. Lett. 2004; 6: 433
    • 3c Tanaka D. Romeril SP. Myers AG. J. Am. Chem. Soc. 2005; 127: 10323
    • 4a Goossen LJ. Deng GJ. Levy LM. Science 2006; 313: 662
    • 4b Goossen LJ. Rodriguez N. Melzer B. Linder C. Deng GJ. Levy LM. J. Am. Chem. Soc. 2007; 129: 4824
    • 4c Goossen LJ. Rodriguez N. Linder C. Zimmermann B. Knauber T. Org. Synth. 2008; 85: 196
    • 4d Goossen LJ. Rodriguez N. Linder C. J. Am. Chem. Soc. 2008; 130: 15248
    • 4e Goossen LJ. Linder C. Rodriguez N. Lange PP. Chem. Eur. J. 2009; 15: 9336
    • 4f Goossen LJ. Rodriguez N. Lange PP. Linder C. Angew.Chem. Int. Ed. 2010; 49: 1111
    • 4g Hackenberger D. Weber P. Blakemore DC. Goossen LJ. J. Org. Chem. 2017; 82: 3917
  • 5 Shang R. Fu Y. Wang Y. Xu Q. Yu H.-Z. Liu L. Angew. Chem. Int. Ed. 2009; 48: 9350
    • 6a Li MZ. Ge H. Org. Lett. 2010; 12: 3464
    • 6b Fang P. Li MZ. Ge H. J. Am. Chem. Soc. 2010; 132: 11898
    • 6c Miao JM. Ge H. Org. Lett. 2013; 15: 2930
    • 6d Miao JM. Fang P. Jagdeep S. Ge H. Org. Chem. Front. 2016; 3: 243
    • 6e Gong WJ. Liu DX. Li FL. Gao J. Li HX. Lang JP. Tetrahedron 2015; 71: 1269
  • 7 Wu YN. Sun L. Chen YY. Zhou Q. Huang J.-W. Miao H. Luo HB. J. Org. Chem. 2016; 81: 1244
  • 8 Kollea S. Batra S. RSC Adv. 2016; 6: 50658
  • 9 Lee PY. Liang PW. Yu W.-Y. Org. Lett. 2017; 19: 2082
  • 10 Laha JK. Patel KV. Sharma S. ACS Omega 2017; 2: 3806
    • 11a Rostovtsev VV. Green LG. Fokin VV. Sharpless BK. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 11b Wang X.-J. Zhang L. Krishnamurthy D. Senanayake CH. Wipf P. Org. Lett. 2010; 12: 4632
    • 11c Deraedt C. Pinaud N. Astruc DJ. Am. Chem. Soc. 2014; 136: 12092
    • 11d Zhao SX. Yun RQ. Chen WZ. Liu MZ. Wu HY. Org. Lett. 2015; 17: 2828
    • 11e Irastorza A. Aizpurua JM. Correa A. Org. Lett. 2016; 18: 1080
    • 11f Miura T. Zhao Q. Murakami M. Angew. Chem. Int. Ed. 2017; 56: 16645
    • 11g Song W. Zheng N. Org. Lett. 2017; 19: 6200
    • 12a Mamidyala SK. Finn MG. Chem. Soc. Rev. 2010; 39: 1252
    • 12b Hashidzume A. Nakamura T. Sato T. Polymer 2013; 54: 3448
    • 12c Sharghi H. Shiri P. Aberi M. Mol. Divers. 2014; 18: 559
    • 12d Singh G. Arora A. Mangat SS. Singh J. Rani S. Kaur N. J. Organomet. Chem. 2015; 777: 6
    • 12e Lauria A. Delisi R. Mingoia F. Terenzi A. Martorana A. Barone G. Almerico AM. Eur. J. Org. Chem. 2014; 3289
    • 12f Johansson JR. Beke-Somfai T. Stalsmeden AS. Kann N. Chem. Rev. 2016; 116: 14726
    • 12g Li LJ. Ding SQ. Yang YP. Zhu AL. Fan XC. Cui MC. Chen CP. Zhang GS. Chem. Eur. J. 2016; 22: 1
    • 12h Dhamodharan P. Sathya K. Dhandapani MJ. Physica B. 2017; 508: 33
    • 13a Gonzaga DT. G. da Rocha DR. da Silva FC. Ferreira VF. Curr. Top. Med. Chem. 2013; 13: 2850
    • 13b Ferreira da Costa J. Garcia-Mera X. Caamano O. Brea JM. Loza MI. Eur. J. Med. Chem. 2015; 98: 212
    • 13c Kuntala N. Telu JR. Banothu V. Nallapati SB. Anireddy JS. Pal S. MedChemComm 2015; 6: 1612
    • 13d Zhou J. Reidy M. Reilly C. Jarikote DV. Negi A. Samali A. Szegezdi E. Murphy PV. Org. Lett. 2015; 17: 1672
    • 14a Koguchi S. Izawa K. ACS Comb. Sci. 2014; 16: 381
    • 14b Gangaprasad D. Paul Raj J. Sagubar Sadik S. Elangovan J. RSC Adv. 2015; 5: 63473
    • 14c Kumar P. Joshi C. Srivastava AK. Gupta P. Boukherroub R. Jain SL. ACS Sustainable Chem. Eng. 2016; 4: 69
    • 14d Rostovskii NV. Ruvinskaya JO. Novikov MS. Khlebnikov AF. Smetanin IA. Agafonova AV. J. Org. Chem. 2017; 82: 256
    • 15a Wang D. Etienne L. Echeverria M. Moya S. Astruc D. Chem. Eur. J. 2014; 20: 4047
    • 15b Shen C. Shen H. Yang M. Xia C. Zhang P. Green Chem. 2015; 17: 225
    • 15c Kubiak RW. Mighion JD. Wilkerson-Hill SM. Alford JS. Yoshidomi T. Davies HM. L. Org. Lett. 2016; 18: 3118
    • 15d Lal K. Yadav P. Kumar A. Med. Chem. Res. 2016; 25: 644
    • 15e Gangaprasad D. Paul Raj J. Kiranmye T. Sasikala R. Karthikeyan K. Kutti Rani S. Elangovan J. Tetrahedron Lett. 2016; 57: 3105
    • 15f Hilimire TA. Chamberlain JM. Anokhina V. Bennett RP. Swart O. Myers JR. Ashton JM. Stewart RA. Featherston AL. Gates K. Helms ED. Smith HC. Dewhurst S. Miller BL. ACS Chem. Biol. 2017; 12: 1674
    • 15g Fu X. Zhao F. Zhao L. Liu Y. Luo F. Jiang Y. Synth. Commun. 2017; 47: 2305
    • 16a Akri KE. Bougrin K. Balzarini J. Faraj A. Benhida R. Bioorg. Med. Chem. Lett. 2007; 17: 6656
    • 16b Bian J. Zhang L. Han Y. Wang C. Zhang L. Curr. Med. Chem. 2015; 22: 2065
    • 16c Dheer D. Singh V. Shankar R. Bioorg. Chem. 2017; 71: 30
    • 17a Tian Q. Chen X. Liu W. Wang Z. Shi S. Kuang C. Org. Biomol. Chem. 2013; 11: 7830
    • 17b Liu W. Li Y. Xu B. Kuang C. Org. Lett. 2013; 15: 2342
    • 17c Shi S. Kuang C. J. Org. Chem. 2014; 79: 6105
    • 17d Shi S. Liu W. He P. Kuang C. Org. Biomol. Chem. 2014; 12: 3576
    • 17e Wang Z. Tian Q. Yu X. Kuang C. Adv. Synth. Catal. 2014; 356: 961
    • 17f Wang Z. Kuang C. Adv. Synth. Catal. 2014; 356: 1549
    • 18a Ackermann L. Althammer A. Fenner S. Angew. Chem. Int. Ed. 2009; 48: 201
    • 18b Ackermann L. Jeyachandran R. Potukuchi H. Novak P. Buttner L. Org. Lett. 2010; 12: 2056
  • 19 Jiang H. Feng Z. Wang A. Liu X. Chen Z. Eur. J. Org. Chem. 2010; 1227
    • 20a Li XG. Liu K. Zou G. Liu PN. Eur. J. Org. Chem. 2014; 7878
    • 20b Zhao S. Yu R. Chen W. Liu M. Wu H. Org. Lett. 2015; 17: 2828
    • 21a Zhao F. Liu Y. Yang S. Xie K. Jiang Y. Org. Chem. Front. 2017; 4: 1112
    • 21b Zhao F. Chen Z. Huang S. Jiang Y. Synthesis 2016; 48: 2105
    • 21c Zhao F. Chen Z. Liu Y. Xie K. Jiang Y. Eur. J. Org. Chem. 2016; 5971
    • 21d Zhao F. Chen Z. Ma X. Huang S. Jiang Y. Tetrahedron Lett. 2017; 58: 614
    • 21e Liu Y. Zhang W. Xie K. Jiang Y. Synlett 2017; 28: 1496
    • 22a Jia X. Zhang S. Wang W. Luo F. Cheng J. Org. Lett. 2009; 11: 3120
    • 22b Wu Y. Li B. Mao F. Li X. Kwong FY. Org. Lett. 2011; 13: 3258
    • 22c Chan C.-W. Zhou Z. Yu W.-Y. Adv. Synth. Catal. 2011; 353: 2999