Synthesis 2018; 50(20): 4113-4123
DOI: 10.1055/s-0037-1609585
paper
© Georg Thieme Verlag Stuttgart · New York

Iodine-Promoted C(sp 2)–H Thiolation of Maleimides with Dimethyl Sulfoxide and Thiols

Hong-Ru Tan
Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Lun Wang
Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Jia-Nan Zhu
Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Zhen-Hua Yang
Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
,
Sheng-Yin Zhao*
Department of Chemistry, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. of China   Email: syzhao8@dhu.edu.cn
› Author Affiliations
We acknowledge the financial support from Shanghai Municipal Natural Science Foundation (No. 15ZR1401400) and Advanced Organic Chemistry Experimental Reform Foundation (17T10513).
Further Information

Publication History

Received: 12 June 2018

Accepted after revision: 21 June 2018

Publication Date:
30 July 2018 (online)


§ Hong-Ru Tan and Lun Wang contributed equally to this work.

Abstract

Iodine-promoted C(sp 2)–H methylthiolation of maleimides using DMSO as synthon has been developed to afford 3-methylthiomaleimides in moderate yields under metal-free conditions. In addition, 3-thiomaleimides were synthesized from maleimides and thiols in the presence of iodine and triethylamine. The methods are simple and efficient for the formation of C–S bond.

Supporting Information

 
  • References

    • 1a Robin MP. Wilson P. Mabire AB. Kiviaho JK. Raymond JE. Haddleton DM. Reilly RK. J. Am. Chem. Soc. 2013; 135: 2875
    • 1b Smith ME. B. Schumacher FF. Ryan CP. Lauren M. Tedaldi LM. Papaioannou D. Waksman G. Caddick S. Baker JR. J. Am. Chem. Soc. 2010; 132: 1960
    • 1c Wang H. Xu M. Xiong MH. Cheng JJ. Chem. Commun. 2015; 51: 4807
    • 1d Lázár L. Nagy M. Borbás A. Herczegh P. Zsuga M. Kéki S. Eur. J. Org. Chem. 2015; 7675
    • 2a Tang ZC. Wilson P. Kempe K. Chen H. Haddleton DM. Macro Lett. 2016; 5: 709
    • 2b Robin MP. O’Reilly RK. Chem. Sci. 2014; 5: 2717
    • 2c Jones MW. Strickland RA. Schumacher FF. Caddick S. Baker JR. Gibsona MI. Haddleton DM. Chem. Commun. 2012; 48: 4064
    • 3a Csávás M. Miskovics A. Szűcs Z. Rőth E. Nagy ZL. Bereczki I. Herczeg M. Batta G. Nikodém EN. Ostorházi E. Rozgonyi F. Borbás A. Herczegh P. J. Antibiot. 2015; 68: 579
    • 3b Castaneda L. Maruani A. Schumacher FF. Miranda E. Chudasama V. Chester KA. Baker JR. Smith ME. B. Caddick S. Chem. Commun. 2013; 49: 8187
    • 3c Ashraf SA. Hill J. Zerizer H. Tetrahedron 1992; 48: 6747
    • 4a Yoshio I. Keisuke Y. Chiharu N. Japanese Patent JP04149173A, 1992
    • 4b Igarashi Y. Watanabe N. Fujita T. Sakamoto M. Watanabe S. Nippon Kagaku Kaishi 1993; 1198
    • 4c Igarashi Y. Watanabe S. Nippon Kagaku Kaishi 1990; 1284
    • 4d Tominaga Y. Shigemitsu Y. Sasaki K. J. Heterocycl. Chem. 2002; 39: 571
    • 4e Kazuo M. Osamu W. Taichiro S. Japanese Patent JP 49016866 B, 1974
    • 5a Eichman CC. Stambuli JP. J. Org. Chem. 2009; 74: 4005
    • 5b Li YM. Li XY. Wang HF. Chen T. Xie YS. Synthesis 2010; 3602
    • 5c Zhang XY. Zhang XY. Guo SR. J. Sulfur Chem. 2011; 32: 23
    • 5d Shi YH. Cai ZY. Peng Y. Shi Z. Pang GS. J. Chem. Res. 2011; 35: 161
    • 5e Rezaei N. Movassagh B. Tetrahedron Lett. 2016; 57: 1625
    • 5f Yu Y. Thom I. Kim SH. Chen DT. Beyer A. Bonnamour J. Zuidema E. Chang S. Bolm C. Adv. Synth. Catal. 2010; 352: 2892
    • 6a Fukuzawa S. Shimizu E. Atsuumi Y. Haga M. Ogata K. Tetrahedron Lett. 2009; 50: 2374
    • 6b Zheng ZS. Qi DY. Shi L. Catal Commun. 2015; 66: 83
    • 6c Ranjit S. Lee R. Heryadi D. Shen C. Wu JE. Zhang PF. Huang KW. Liu XG. J. Org. Chem. 2011; 76: 8999
    • 6d Dai C. Xu ZQ. Huang F. Yu ZK. Gao YF. J. Org. Chem. 2012; 77: 4414
    • 7a Duan ZY. Ranjit S. Zhang PF. Liu XG. Chem. Eur. J. 2009; 15: 3666
    • 7b Ranjit S. Duan ZY. Zhang PF. Liu XG. Org. Lett. 2010; 12: 4134
    • 7c Becht JM. Drian CL. J. Org. Chem. 2011; 76: 6327
    • 7d Wang PF. Wang XQ. Dai JJ. Feng YS. Xu HJ. Org. Lett. 2014; 16: 4586
  • 8 Ravi C. Mohan DC. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
  • 9 Bagdi AK. Mitra S. Ghosh M. Hajra A. Org. Biomol. Chem. 2015; 13: 3314
  • 10 Xiao FH. Xie H. Liu SW. Deng GJ. Adv. Synth. Catal. 2014; 356: 364
  • 11 Li X. Li H. Yang W. Zhuang J. Li H. Wang W. Tetrahedron Lett. 2016; 57: 2660
  • 12 Chen X. Hao XS. Goodhue CE. Yu JQ. J. Am. Chem. Soc. 2006; 128: 6790
  • 13 Chu LL. Yue XY. Qing FL. Org. Lett. 2010; 12: 1644
    • 14a Dai C. Xu ZQ. Huang F. Yu ZK. Gao YF. J. Org. Chem. 2012; 77: 4414
    • 14b Patil SM. Kulkarni S. Mascarenhas M. Sharma R. Roopan SM. Roychowdhury A. Tetrahedron 2013; 69: 8255
    • 14c Ravi C. Mohan DC. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
    • 14d Xu YF. Cong TT. Liu P. Sun PP. Org. Biomol. Chem. 2015; 13: 9742
    • 14e Sharma P. Rohilla S. Jain N. J. Org. Chem. 2015; 80: 4116
    • 14f Zou JF. Huang WS. Li L. Xu Z. Zheng ZJ. Yanga KF. Xu LW. RSC Adv. 2015; 5: 30389
    • 15a Luo F. Pan CD. Li LP. Chen F. Cheng J. Chem. Commun. 2011; 47: 5304
    • 15b Joseph PJ. A. Priyadarshini S. Kantam ML. Sreedhar B. Tetrahedron 2013; 69: 8276
    • 15c Mensah EJ. Magolan J. Tetrahedron Lett. 2014; 55: 5323
    • 15d Ghosh K. Ranjit S. Mal D. Tetrahedron Lett. 2015; 56: 5199
    • 16a Liu FL. Chen JR. Zou YQ. Wei Q. Xiao WJ. Org. Lett. 2014; 16: 3768
    • 16b Li HY. Xing LJ. Lou MM. Wang H. Liu RH. Wang B. Org. Lett. 2015; 17: 1098
  • 17 Shukla G. Srivastava A. Nagaraju A. Raghuvanshi K. Singh MS. Adv. Synth. Catal. 2015; 357: 3969
  • 18 Shen T. Huang XQ. Liang YF. Jiao N. Org. Lett. 2015; 17: 6186
  • 19 Jiang X. Wang C. Wei YW. Xue D. Liu ZT. Xiao JL. Chem. Eur. J. 2014; 20: 58
  • 20 Mahajan PS. Tanpure SD. More NA. Gajbhiye JM. Mhaske SB. RSC Adv. 2015; 5: 101641
  • 21 Fei HY. Yu JT. Jiang Y. Guo H. Cheng J. Org. Biomol. Chem. 2013; 11: 7092
  • 22 Ren XY. Chen JB. Chen F. Cheng J. Chem. Commun. 2011; 47: 6725
  • 23 Jiang Y. Loh TP. Chem. Sci. 2014; 5: 4939
    • 24a Gao XF. Pan XJ. Gao J. Jiang HF. Yuan GQ. Li YW. Org. Lett. 2015; 17: 1038
    • 24b Gao XF. Pan XJ. Gao J. Huang HW. Yuan GQ. Li YW. Chem. Commun. 2015; 51: 210
    • 24c Gao QH. Wu X. Li YH. Liu S. Meng XG. Wu AX. Adv. Synth. Catal. 2014; 356: 2924
    • 25a Yang ZH. An YL. Chen Y. Shao ZY. Zhao SY. Adv. Synth. Catal. 2016; 358: 3869
    • 25b Yang ZH.. Tan H. R. An YL. Zhao YW. Lin HP. Zhao SY. Adv. Synth. Catal. 2018; 360: 173
    • 25c An YL. Yang ZH. Zhang HH. Zhao SY. Org. Lett. 2016; 18: 152
    • 25d An YL. Deng YX. Zhang W. Zhao SY. Synthesis 2015; 47: 1581
    • 26a Arai Y. Matsui M. Koizumi T. Shiro M. J. Org. Chem. 1991; 56: 1983
    • 26b Barry JF. Wallace TW. Walshe ND. A. Tetrahedron 1995; 51: 12797
    • 27a Uno BE. Deibler KK. Villa C. Raghuraman A. Scheidt KA. Adv. Synth. Catal. 2018; 360: 1719
    • 27b Chalker JM. Bernardes GJ. L. Lin YA. Davis BG. Chem. Asian J. 2009; 4: 630
    • 28a Liu X. Cui H. Yang D. Dai S. Zhang G. Wei W. Wang H. Catal. Lett. 2016; 146: 1743
    • 28b Choudhury P. Roy B. Basu B. Asian J. Org. Lett. 2017; 6: 1569
    • 28c Parumala SK. R. Peddinti RK. Green Chem. 2015; 17: 4068
    • 28d Siddaraju Y. Prabhu KR. Org. Lett. 2016; 18: 6090
  • 29 White JE. J. Polym. Sci., Polym. Chem. 1987; 25: 1191
  • 30 Sahoo MK. Mhaske SB. Argade NP. Synthesis 2003; 346
  • 31 Sammut IA. Harrison JC. Hewitt RJ. Read MI. Stanley NJ. Woods LM. Kueh JT. B. Jay-Smith M. Smith RA. J. Giles G. Larsen L. Rennison D. Brimble MA. Larsen DS. Patent WO 2017095237, 2017