Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(23): 4611-4616
DOI: 10.1055/s-0037-1609554
DOI: 10.1055/s-0037-1609554
paper
DDQ-Mediated Oxidation of Allylarenes: Expedient Access to Cinnamaldehyde-Containing Phenylpropanoids
Authors
Financial support from National Natural Science Foundation of China (No. 21702002 and 31640068), and Anhui Provincial Natural Science Foundation (1808085QC79) is gratefully acknowledged.
Further Information
Publication History
Received: 12 May 2018
Accepted after revision: 13 June 2018
Publication Date:
24 July 2018 (online)

Abstract
Phenylpropanoid natural products containing a cinnamaldehyde motif were easily synthesized from allylarenes mediated by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) oxidation. Representative examples described herein are five types of 4-hydroxycinnamaldehyde derivatives from monolignols biosynthesis, Boropinal C, and 7-methoxywutaifuranal from plant extracts. Especially, simple synthesis of 7-methoxywutaifuranal was exploited through selective mono-oxidation and subsequent isomerization–ring-closing-metathesis strategy.
Key words
phenylpropanoids - DDQ oxidation - 4-hydroxycinnamaldehydes - boropinal C - 7-methoxywutaifuranalSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609554.
- Supporting Information (PDF)
-
References
- 1 Barros J. Serrani-Yarce JC. Chen F. Baxter D. Venables BJ. Dixon RA. Nat. Plants 2016; 2: 16050
- 2 Wang Y. Gao L. Wang Z. Liu Y. Sun M. Yang DQ. Wei CL. Shan Y. Xia T. Sci. Hortic. (Amsterdam, Neth.) 2012; 133: 72
- 3 Vogt T. Mol. Plant 2010; 3: 2
- 4 Yu O. Jez JM. Plant J. 2008; 54: 750
- 5 Vanholme R. Demedts B. Morreel K. Ralph J. Boerjan W. Plant Physiol. 2010; 153: 895
- 6 Cai Y. Li G. Nie J. Lin Y. Nie F. Zhang J. Xu Y. Sci. Hortic. (Amsterdam, Neth.) 2010; 125: 374
- 7 Lv F. Ralph J. J. Agric. Food Chem. 1998; 46: 1794
- 8 Zhu Y. Mohammadi A. Ralph J. Bioenergy Res. 2012; 5: 407
- 9 Wink M. Phytochemistry 2003; 64: 3
- 10 Li X. Weng J.-K. Chapple C. Plant J. 2008; 54: 569
- 11 Tanaka Y. Sasaki N. Ohmiya A. Plant J. 2008; 54: 733
- 12 Brunetti C. Guidi L. Sebastiani F. Tattini M. Environ. Exp. Bot. 2015; 119: 54
- 13 Wang Y. Xu Y. Gao L. Yu O. Wang X. He X. Liu Y. Xia T. BMC Plant Biol. 2014; 14: 347
- 14 Pan J. Yuan C. Lin C. Jia Z. Zheng R. Pharmazie 2003; 58: 767
- 15 Wang Y. Li W. Ning J. Hua R. Wu H. J. Food Drug Anal. 2015; 23: 93
- 16 Ito C. Itoigawa M. Otsuka T. Tokuda H. Nishino H. Furukawa H. J. Nat. Prod. 2000; 63: 1344
- 17 Huang H.-Y. Ishikawa T. Peng C.-F. Tsai I.-L. Chen I.-S. J. Nat. Prod. 2008; 71: 1146
- 18 Quideau S. Ralph J. J. Agric. Food Chem. 1992; 40: 1108
- 19 Terashima N. Ralph SA. Landucci LL. Holzforschung 1995; 50: 151
- 20 Daubresse N. Francesch C. Mhamdi F. Rolando C. Synthesis 1994; 369
- 21 Chen F. Kota P. Blount JW. Dixon RA. Phytochemistry 2001; 58: 1035
- 22 Schmidt B. Wolf F. J. Org. Chem. 2017; 82: 4386
- 23 IIiefski T. Li S. Lundquist K. Acta Chem. Scand. 1998; 52: 1177
- 24 IIiefski T. Li S. Lundquist K. Tetrahedron Lett. 1998; 39: 2413
- 25 van Otterlo WA. L. Morgans GL. Madeley LG. Kuzvidza S. Moleele SS. Thornton N. de Koning CB. Tetrahedron 2005; 61: 7746
- 26 Charan Raja MR. Velappan AB. Chellappan D. Debnath J. Mahapatra SK. Eur. J. Med. Chem. 2017; 139: 503
- 27 Guzmán D. Ramis X. Fernández-Francos X. Flor SD. Serra A. Eur. Polym. J. 2017; 93: 530