Synlett 2018; 29(10): 1367-1372
DOI: 10.1055/s-0037-1609490
letter
© Georg Thieme Verlag Stuttgart · New York

Convergent Synthesis of Novel Mono- and Di-substituted 1,2-Isopropylideneglucofuranose Appended Dendrimers with a Ferrocene Core and their Electrochemical Studies

Ankur Ray*
a   St. Xavier’s College, 30, Mother Teresa Sarani (Park Street), Kolkata-700016, West Bengal, India   Email: profankurray@sxccal.edu
,
Sabiha Khan
b   Department of Microbiology, Rashtraguru Surendranath College, Barrackpore, Kolkata-700120, West Bengal, India
› Author Affiliations
Further Information

Publication History

Received:14.02.2018

Accepted after revision: 04 March 2018

Publication Date:
10 April 2018 (online)


Abstract

Ferrocene-cored dendrimers incorporating 1,2-isopropylidenefuranose capped furanoside branches were synthesized and their electrochemical properties were studied. It was observed that the dendritic environment in the ferrocene dendrimers increased the E 1/2 values with increase in bulk of the dendrimer, as expected. The reversible nature of the redox process was maintained in all the dendrimers.

 
  • References

  • 1 Bard AJ. Nature 1995; 374: 13
  • 2 Astruc D. Acc. Chem. Res. 2000; 33: 287
  • 3 Hecht S. Fréchet JM. J. Angew. Chem. Int. Ed. 2001; 40: 74
  • 4 Newkome GR. Shreiner C. Chem. Rev. 2010; 110: 6338
  • 5 Balzani V. Campagna S. Denti G. Juris A. Serroni S. Venturi M. Acc. Chem. Res. 1998; 31: 26
  • 6 Hearshaw MA. Moss JR. Chem. Commun. 1999; 1
  • 7 Newkome GR. He E. Moorefield CN. Chem. Rev. 1999; 99: 1689
  • 8 Tomalia DA. Naylor AM. Goddard WIII. Angew. Chem. Int. Ed. Engl. 1990; 29: 138
  • 9 Bosman AW. Janssen HM. Meijer EW. Chem. Rev. 1999; 99: 1665
  • 10 Cuadrado I. Moran M. Casado CM. Alonso B. Losada J. Coord. Chem. Rev. 1999; 193–195: 395
  • 11 Grayson SM. Fréchet JM. J. Chem. Rev. 2001; 101: 3819
  • 12 Casado CM. Cuadrado I. Moran M. Alonso B. Garcia B. Gonzalez B. Losada J. Coord. Chem. Rev. 1999; 186: 53
  • 13 Nlate S. Ruiz J. Blais JC. Astruc D. Chem. Commun. 2000; 417
  • 14 Nlate S. Ruiz J. Sartor V. Navarro R. Blais JC. Astruc D. Chem. Eur. J. 2000; 6: 2544
  • 15 Valerio C. Moulines F. Ruiz J. Blais JC. Astruc D. J. Org. Chem. 2000; 65: 1996
  • 16 Turrin C.-O. Chiffre J. de Montauzon D. Daran J.-C. Camminade A.-M. Manoury E. Balavoine G. Majoral J.-P. Macromolecules 2000; 33: 7328
  • 17 Turrin C.-O. Chiffre J. Daran J.-C. de Montauzon D. Caminade A.-M. Manoury E. Balavoine G. Majoral J.-P. Tetrahedron 2001; 57: 2521
  • 18 Palomero J. Mata JA. Gonzalez F. Peris E. New J. Chem. 2002; 26: 291
  • 19 Castro R. Cuadrado I. Alonso B. Casado CM. Morán M. Kaifer AE. J. Am. Chem. Soc. 1997; 119: 5760
  • 20 Sengupta S. Tetrahedron Lett. 2003; 44: 7281
  • 21 Christine V. Fillaut J.-L. Ruiz J. Guittard J. Blais J.-C. Astruc D. J. Am. Chem. Soc. 1997; 119: 2588
  • 22 Astruc D. Nat. Chem. 2012; 4: 255
  • 23 Astruc D. Boisselier E. Ornelas C. Chem. Rev. 2010; 110: 1857
  • 24 Cardona CM. McCarley TD. Kaifer AE. J. Org. Chem. 2000; 65: 1857
  • 25 Cardona CM. Kaifer AE. J. Am. Chem. Soc. 1998; 120: 4023
  • 26 Stone DL. Smith DK. Mcgill PT. J. Am. Chem. Soc. 2002; 124: 856
  • 27 Ray A. Ghorai S. Tetrahedron Lett. 2011; 52: 2980
  • 28 Abbasi E. Aval SF. Akbarzadeh A. Milani M. Nasrabadi HT. Joo SW. Hanifehpour Y. Koshki KN. Asl RP. Nanoscale Res. Lett. 2014; 9: 247
  • 29 Mazumdar A. Davis J. Rangari V. Curry M. Nanomaterials 2013; 843709
  • 30 Urzua JI. Torneiro M. J. Org. Chem. 2017; 82: 13231
  • 31 Wu P. Feldman AK. Nugent AK. Hawker CJ. Scheel A. Voit B. Pyun J. Frechet JM. J. Sharpless KB. Fokin VV. Angew. Chem. 2004; 116: 4018
  • 32 Lee JW. Kim B.-K. Bull. Korean Chem. Soc. 2005; 26: 658
  • 33 Srivastava A. Ghorai S. Bhattacharjya A. Bhattacharya S. J. Org. Chem. 2005; 70: 6574
  • 34 Ghosh S. Banthia AK. Chen Z. Tetrahedron 2005; 61: 2889
  • 35 Ghosh S. Banthia AK. Maiya BG. Org. Lett. 2002; 4: 3603
  • 36 Eur. J. Inorg. Chem., 2017, issue 2
  • 37 Ashton PR. Balzani V. Leon ML. Colonna B. Credi A. Jayaraman N. Raymo FM. Stoddart JF. Venturi M. Chem. Eur. J. 2002; 8: 673
  • 38 Galow TH. Rodrigo J. Cleary K. Cooke G. Rotello VM. J. Org. Chem. 1999; 64: 3745
  • 39 Compound 3: To a solution of ferrocene mono acid fluoride(0.02 g, 0.09 mmol) and DMAP (0.02 g, 0.13 mmol) in dichloromethane (2.0 mL), amine(0.08 g, 0.13 mmol) was added at 0 °C and the reaction mixture was stirred at 25 °C in the dark for 48 h. Upon completion of the reaction (as revealed by TLC), dichloromethane (10.0 mL) was added and the reaction mixture was washed well with water and dried. Removal of solvent gave a dark-orange foam, which, on chromatography over silica gel (100–200 mesh; EtOAc–petroleum ether, 3:1), afforded 3 (0.06 g, 86%) as an orange foam; [α]D 25 –6.4 (c 0.35, CHCl3); IR (KBr): 2985, 2931, 1662 cm–1; MS (ESI): m/z = 872 [M + Na]. 1H NMR (300 MHz, DMSO-d 6): δ = 9.50 (s, 1 H), 7.64 (s, 2 H), 7.03 (s, 1 H), 5.89 (d, J = 3.5 Hz, 2 H), 5.00 (br s, 2 H), 4.73 (d, J = 3.5 Hz, 2 H), 4.70 (d, J = 12.1 Hz, 2 H), 4.54 (d, J = 12.1 Hz, 2 H), 4.45 (br s, 2 H), 4.34–4.27 (m, 2 H), 4.21 (s, 5 H), 4.09–4.08 (m, 2 H), 4.04–3.99 (m, 2 H), 3.95 (br s, 2 H), 3.86–3.81 (m, 2 H), 1.40 (s, 6 H), 1.33 (s, 6 H), 1.30 (s, 6 H), 1.26 (s, 6 H); 13C NMR (75 MHz, DMSO-d 6): δ = 169.1 (q), 140.2 (q), 139.2 (q), 122.3 (CH), 119.6 (CH), 111.7 (q), 105.5 (CH), 82.5 (CH), 82.1 (CH), 81.3 (CH), 77.2 (q), 73.2 (CH), 72.0 (CH2), 71.4 (CH), 70.3 (CH), 69.5 (CH), 66.9 (CH2), 27.5 (CH3), 27.4 (CH3), 26.9 (CH3), 26.1 (CH3).
  • 40 Compound 7: To a solution of ferrocene mono acid fluoride (0.02 g, 0.09 mmol) and DMAP (0.016 g, 0.13 mmol) in dichloromethane (3.0 mL) was added bigger amine (0.122 g, 0.09 mmol) at 0 °C, and the reaction mixture was stirred at 25 °C in the dark for 120 h. UPon completion of the reaction (as revealed by TLC), dicloromethane (12.0 mL) was added and the reaction mixture was washed with water and dried. Removal of solvent gave a dark-orange foam, which, on chromatography over silica gel (100–200 mesh; EtOAc), afforded 7 (0.125 g, 73%) as a deep-orange foam; [α]D 25 –40.8 (c 1.58, CHCl3); MS (FAB): m/z = 1993 [M + H2O]; 1H NMR (300 MHz, DMSO-d 6): δ = 9.60 (s, 2 H), 9.30 (s, 1 H), 7.60 (s, 4 H), 7.48 (s, 2 H), 7.00 (s, 2 H), 6.82 (s, 1 H), 6.08 (d, J = 3.2 Hz, 2 H), 5.85 (d, J = 3.6 Hz, 4 H), 4.95 (br s, 2 H), 4.72–4.60 (m, 12 H), 4.51–4.44 (m, 8 H), 4.29–4.24 (m, 6 H), 4.17 (s, 5 H), 4.07–3.78 (m, 18 H), 1.44 (s, 6 H), 1.38 (s, 12 H), 1.31 (s, 12 H), 1.30 (s, 6 H), 1.27 (s, 12 H), 1.24 (s, 12 H); 13C NMR (75 MHz, DMSO-d 6): δ = 165.8 (q), 138.9 (q), 138.4 (q), 138.1 (q), 137.9 (q), 121.8 (CH), 118.9 (CH), 118.4 (CH), 111.8 (q), 110.8 (q), 108.0 (q), 105.3 (CH), 104.6 (CH), 82.2 (CH), 81.6 (CH), 81.5 (CH), 81.2 (CH), 80.7 (CH), 80.4 (CH), 76.2 (q), 72.3 (CH), 71.6 (CH2), 71.0 (CH2), 70.4 (CH), 69.4 (CH), 68.5 (CH), 66.0 (CH2), 26.8 (CH3), 26.6 (CH3), 26.5 (CH3), 26.2 (CH3), 26.0 (CH3), 25.2 (CH3).
  • 41 Compound 5: To a solution of ferrocene dicarboxylic acid (0.01 g, 0.04 mmol), HOBT (0.02 g, 0.16 mmol) and DCC (0.02 g,.09 mmol) in dichloromethane (0.8 mL) was added amine (0.07 g, 0.11 mmol) at 0 °C and the reaction mixture was stirred at 25 °C for 48 h. Upon completion of the reaction (as revealed by TLC), dichloromethane (6.0 mL) was added and the reaction mixture was washed with water and dried. Removal of the solvent gave a dark-orange foam, which, on chromatography over silica gel (100–200 mesh; EtOAc–petroleum ether, 3:2), afforded 5 (0.31 g, 66%) as an orange foam; [α]D 25 –19.3 (c 0.1, CHCl3); IR (KBr): 2986, 2935, 1729, 1649 cm–1; MS (ESI): m/z = 1535 [M + Na]; 1H NMR (300 MHz, DMSO-d 6): δ = 9.67 (s, 2 H), 7.63 (s, 4 H), 7.04 (s, 2 H), 5.88 (d, J = 3.7 Hz, 4 H), 4.99 (br s, 4 H), 4.71 (d, J = 3.7 Hz, 4 H), 4.67 (d, J = 12.2 Hz, 4 H), 4.52 (d, J = 12.1 Hz, 4 H), 4.47 (br s, 4 H), 4.32 (q, J = 6.3 Hz, 4 H), 4.08 (dd, J = 6.3, 2.8 Hz, 4 H), 4.00 (dd, J = 8.3, 6.4 Hz, 4 H), 3.94 (d, J = 2.8 Hz, 4 H), 3.83 (dd, J = 8.1, 6.2 Hz, 4 H), 1.40 (s, 12 H), 1.33 (s, 12 H), 1.29 (s, 12 H), 1.26 (s, 12 H); 13C NMR (75 MHz, DMSO-d 6): δ = 167.4 (q), 139.0 (q), 138.2 (q), 121.3 (CH), 118.7 (CH), 110.8 (q), 107.9 (q), 104.6 (CH), 81.6 (CH), 81.2 (CH), 80.3 (CH), 77.8 (q), 72.3 (CH), 72.0 (CH), 71.2 (CH2), 70.0 (CH), 65.9 (CH2), 26.5 (CH3), 26.5 (CH3), 26.4 (CH3), 26.0 (CH3), 25.1 (CH3).
  • 42 Compound 9: To a solution of bis-fluorocarbonylferrocene ferrocene (0.03 g, 0.1 mmol) and DMAP (0.032 g, 0.26 mmol) in dichloromethane (3.0 mL) was added bigger amine (0.225 g, 0.23 mmol) at 0 °C, and the reaction mixture was stirred at 25 °C in the dark for 140 h. Upon completion of the reaction (as revealed by TLC), dichloromethane (10.0 mL) was added and the reaction mixture was washed with water and dried. Removal of solvent gave a dark-orange foam, which, on chromatography over silica gel (100–200 mesh; EtOAc), afforded 7 (0.10 g, 73%) as a deep-orange foam [α]D 25 –46.2 (c 0.3, CHCl3); MS (FAB): m/z = 3783 [M + H2O]; 1H NMR (300 MHz, DMSO-d 6): δ = 9.70 (s, 4 H), 9.20 (s, 2 H), 7.60 (s, 8 H), 7.40 (s, 4 H), 7.10 (s, 4 H), 6.82 (s, 2 H), 6.10 (d, J = 3.2 Hz, 4 H), 5.85 (d, J = 3.6 Hz, 8 H), 4.90 (br s, 4 H), 4.70–4.60 (m, 24 H), 4.50–4.40 (m, 16 H), 4.30–4.20 (m, 12 H), 4.12 (s, 10 H), 4.00–3.78 (m, 36 H), 1.45 (s, 12 H), 1.33 (s, 24 H), 1.31 (s, 24 H), 1.30 (s, 12 H), 1.27 (s, 24 H), 1.24 (s, 24 H); 13C NMR (75 MHz, DMSO-d 6): δ = 165.2 (q), 138.5 (q), 138.3 (q), 138.0 (q), 137.8 (q), 121.5 (CH), 118.6 (CH), 118.2 (CH), 111.5 (q), 110.7 (q), 108.0 (q), 105.0 (CH), 104.3 (CH), 82.0 (CH), 81.7 (CH), 81.5 (CH), 81.2 (CH), 80.7 (CH), 80.4 (CH), 76.0 (q), 72.1 (CH), 71.6 (CH2), 71.0 (CH2), 70.7 (CH), 69.4 (CH), 68.4 (CH), 66.0 (CH2), 26.8 (CH3), 26.6 (CH3), 26.5 (CH3), 26.2 (CH3), 26.0 (CH3), 25.4 (CH3).