Synthesis 2018; 50(12): 2385-2393
DOI: 10.1055/s-0037-1609480
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Isoxazolines and Isoxazoles via Metal-Free Desulfitative Cyclization

Jiaxin Cheng
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, P. R. of China   Email: lhe2001@sina.com
,
Ze Yang
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, P. R. of China   Email: lhe2001@sina.com
,
Yuansheng Li
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, P. R. of China   Email: lhe2001@sina.com
,
Yulan Xi
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, P. R. of China   Email: lhe2001@sina.com
,
Qiu Sun*
b   West China Medical Center of Sichuan University, Chengdu, Sichuan, 610041, P. R. of China   Email: sunqiu@scu.edu.cn
,
Ling He*
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, P. R. of China   Email: lhe2001@sina.com
› Author Affiliations
We gratefully acknowledge the financial support from the National Science Foundation of China (No. 21072131) and Sichuan University–Lu Zhou Strategic Cooperation Projects (No. 2013 CDLZ-S18).
Further Information

Publication History

Received: 03 February 2018

Accepted after revision: 09 March 2018

Publication Date:
14 May 2018 (online)


Abstract

A novel, one-pot reaction for the synthesis of isoxazolines and isoxazoles is developed via a cascade process under metal-free conditions. The approach involves the formation of intramolecular C–N and C–O bonds and intermolecular C–C bonds from aromatic alkenes or alkynes and N-hydroxysulfonamides using hypervalent iodine(VII) and iodine as the oxidant. Activation of C–H and C–C bonds/construction of C–O bonds/elimination of SO2/C–N bond formation is achieved in sequence­ in the reaction system.

 
  • References

  • 1 Groutas WC. Venkataman R. Chong LS. Yoder JE. Epp JB. Stanga MA. Kim E. Bioorg. Med. Chem. 1995; 3: 125
  • 2 Fan, Y. J.; He, T.T.; Yang, J.C.; Liu, C.L. Agrochem. Res. Appl. 2010, 14, 1.
    • 3a Zhao C. Casida JE. J. Agric. Food Chem. 2014; 62: 1019
    • 3b Lahm GP. Cordova D. Barry JD. Pahutski TF. Bioorg. Med. Chem. Lett. 2013; 23: 3001
    • 3c Ozoe Y. Asahi M. Ozoe F. Biochem. Biophys. Res. Commun. 2010; 391: 744
    • 4a Kozikowski AP. Acc. Chem. Res. 1984; 17: 410
    • 4b Zaki M. Oukhrib A. Akssira M. Berteina-Raboin S. RSC Adv. 2017; 7: 6523
  • 5 Gao MC. Li YY. Gan YS. Xu B. Angew. Chem. 2015; 127: 8919
  • 6 Li CL. Deng HM. Li CJ. Jia XS. Li J. Org. Lett. 2015; 17: 5718
    • 7a Mendelsohn BA. Lee S. Kim S. Teyssier F. Aulakh VS. Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 7b Cecchi L. De Sarlo F. Machetti F. Chem. Eur. J. 2008; 14: 7903
    • 7c Yoshimura A. Middleton KR. Todora AD. Kastern BJ. Koski SR. Maskaev AV. Zhdankin VV. Org. Lett. 2013; 15: 4010
    • 7d Minakata S., Okumura S., Nagamachi, T.; Takeda, Y. Org. Lett., 2011, 13, 2966;
    • 7e Jia Q-f. Benjamin PM. S. Huang J. Du Z. Zheng X. Zhang K. Conney AH. Wang J. Synlett 2013; 24: 79
    • 7f Grecian S. Fokin VV. Angew. Chem. Int. Ed. 2008; 47: 8285
    • 7g Nishiwaki N., Kobiro K., Kiyoto, H.; Hirao, S.; Sawayama, J.; Saigo, K.; Okajima, Y.; Uehara, T.; Maki, A.; Ariga, M. Org. Biomol. Chem., 2011, 9, 2832
    • 7h Trogu E. Vinattieri C. De Sarlo F. Machetti F. Chem. Eur. J. 2012; 18: 2081
    • 7i Svejstrup TD. Zawodny W. Douglas JJ. Bidgeli D. Sheikh NS. Leonori D. Chem. Commun. 2016; 52: 12302
    • 7j Zhang W., Su, Y.; Wang, K.-H.; Wu, L.; Chang, B.; Shi, Y.; Huang, D.; Hu, Y. Org. Lett., 2017, 19, 376.
    • 7k Triandafillidi I. Kokotos CG. Org. Lett. 2017; 19: 106
    • 7l Maestri G., Cañeque, T.; Della Ca’, N.; Derat, E.; Catellani, M.; Chiusoli, G. P.; Malacria, M. Org. Lett., 2016, 18, 6108.
    • 7m Chandrasekhar B. Ahn S. Ryu J-S. J. Org. Chem. 2016; 81: 6740
    • 7n Rouf A. Şahin E. Tanyeli C. Tetrahedron 2017; 73: 331
    • 7o Bhosale S., Kurhade, S.; Prasad, U. V.; Palle, V. P.; Bhuniya, D. Tetrahedron, 2009, 50, 3948.
    • 7p Wang L-J. Chen M. Qi L. Xu Z. Li W. Chem. Commun. 2017; 53: 2056
    • 7q Han B. Yang XL. Fang R. Yu W. Wang C. Duan XY. Liu S. Angew. Chem. Int. Ed. 2012; 51: 8816
  • 8 Ibrar A. Khan I. Abbas N. Farooq U. Khan A. RSC Adv. 2016; 6: 93016
    • 9a Mendelsohn BA. Lee S. Kim S. Teyssier F. Aulakh VS. Ciufolini MA. Org. Lett. 2009; 11: 1539
    • 9b CecchI L. De Sarlo F. Machetti F. Chem. Eur. J. 2008; 14: 7903
    • 9c Yoshimura A. Middleton KR. Todora AD. Kastern BJ. Koski SR. Maskaev AV. Zhdankin VV. Org. Lett. 2013; 15: 4010
    • 9d Minakata S. Okumura S. Nagamachi T. Takeda Y. Org. Lett. 2011; 13: 2966
    • 9e Jia QF. Benjamin PM. S. Huang J. Synlett 2013; 24: 79
    • 9f Grecian S. Fokin VV. Angew. Chem. Int. Ed. 2008; 47: 8285
    • 9g Nishiwaki N. Kobiro K. Kiyoto H. Hirao S. Sawayama J. Saigo K. Okajima Y. Uehara T. Maki A. Ariga M. Org. Biomol. Chem. 2011; 9: 2832
    • 9h Trogu E. Vinattieri C. De Sarlo F. Machetti F. Chem. Eur. J. 2012; 18: 2081
    • 9i Svejstrup TD. Zawodny W. Douglas JJ. Bidgeli D. Sheikh NS. Leonori D. Chem. Commun. 2016; 52: 12302
    • 9j Zhang W. Su Y. Wang KH. Wu L. Chang B. Shi Y. Huang DF. Hu YL. Org. Lett. 2017; 19: 376
    • 9k Triandafillidi I. Kokotos C. Org. Lett. 2017; 19: 106
    • 9l Maestri G. Cañeque T. DellaCa’ N. Derat E. Catellani M. Chiusoli GP. Malacria M. Org. Lett. 2016; 18: 6108
    • 9m Chandrasekhar B. Ahn S. Ryu J. J. Org. Chem. 2016; 81: 6740
    • 9n Rouf A. Sahin E. Tanyeli C. Tetrahedron 2017; 73: 331
    • 9o Bhosale S. Kurhade S. Prasad UV. Palle VP. Bhuniya D. Tetrahedron 2009; 50: 3948
    • 9p Wang LJ. Chen M. Qi L. Xu Z. Li W. Chem. Commun. 2017; 53: 2056
    • 9q Han B. Yang XL. Fang R. Yu W. Wang C. Duan XY. Liu S. Angew. Chem. Int. Ed. 2012; 51: 8816
  • 10 Tang S. He J. Sun Y. He L. She X. J. Org. Chem. 2010; 75: 1961
  • 11 Itoh KI. Sakamaki H. Nakazato N. Synthesis 2005; 3541
  • 12 Kozikowski AP. Stein PD. J. Am. Chem. Soc. 1982; 104: 4023
  • 13 Zhu X. Wang YF. Ren W. Org. Lett. 2013; 15: 3214
  • 15 Ueda M. Sato A. Ikeda Y. Miyoshi T. Naito T. Miyata O. Org. Lett. 2010; 12: 2594
    • 17a Brice JL. Harang JE. Timokhin VI. J. Am. Chem. Soc. 2005; 127: 2868
    • 17b Inamoto K. Saito T. Katsuno M. Org. Lett. 2007; 9: 2931
    • 17c Fraunhoffer KJ. White MC. J. Am. Chem. Soc. 2007; 129: 7274
    • 17d Reed SA. White MC. J. Am. Chem. Soc. 2008; 130: 3316
    • 17e Liu G. Yin G. Wu L. Angew. Chem. Int. Ed. 2008; 47: 4733
    • 18a Lee JM. Ahn DS. Jung DY. J. Am. Chem. Soc. 2006; 128: 12954
    • 18b Cho SH. Kim JY. Lee SY. Angew. Chem. Int. Ed. 2009; 48: 9127
    • 18c Kim JY. Cho SH. Joseph J. Angew. Chem. Int. Ed. 2010; 49: 9899
    • 19a He L. Chan PW. H. Tsui WM. Yu WY. Che CM. Org. Lett. 2004; 6: 2405
    • 19b He L. Yu J. Zhang J. Yu XQ. Org. Lett. 2007; 9: 2277
    • 19c Jiang Y. Zhou GC. He GL. He L. Synthesis 2007; 1459
    • 19d Liu N. Tang BY. He L. Eur. J. Org. Chem. 2009; 2059
    • 19e Yin P. Ma WB. Chen Y. Org. Lett. 2009; 11: 5482
  • 20 Feuer H. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. John Wiley & Sons; Hoboken: 2008
    • 21a Al-Majid AM. Shamsan WS. Al-Odayn A.-BM. Nahra F. Aouak T. Nolan SP. Des. Monomers Polym. 2017; 20: 167
    • 21b Paulus RM. Becer CR. Hoogenboom R. Schubert US. Aust. J. Chem. 2009; 62: 254
    • 21c Zhang H. Eur. Polym. J 2013; 49: 579
    • 21d Narasimhan NS. Aidhen IS. Tetrahedron Lett. 1988; 29: 2987
    • 21e Huang N.-J. Sundberg DC. J. Polym. Sci., Part A: Polym. Chem 1995; 33: 2571
    • 22a Cavero M. Motherwell WB. Potier P. Tetrahedron Lett. 2001; 42: 4377
    • 22b Turner CD. Ciufolini MA. ARKIVOC 2011; (i): 410
    • 22c Santra S. Kundu SK. Ghosal NC. Chatterjee R. Mahato S. Khalymbadzha IA. Zyryanov GV. Hajra A. Majee A. ARKIVOC 2016; (v): 416
    • 22d Li W. Zhou X. Shi Z. Liu Y. Liu Z. Gao H. Org. Biomol. Chem. 2016; 14: 9985
  • 23 Minakata S. Okumura S. Nagamachi T. Takeda Y. Org. Lett. 2011; 13: 2966
  • 24 Grunanger P. Finzi PV. Gazz. Chim. Ital. 1959; 89: 1771
  • 25 Barnes RP. Pinkney GE. Phillips GM. J. Am. Chem. Soc. 1954; 76: 276
  • 26 Yuzuri S. Chandrasekaran PC. Vasquez T. Baumstark AL. Heterocycl. Commun. 2006; 12: 7
  • 27 Bianchi G. Gruenanger P. Tetrahedron 1965; 21: 817
  • 28 Lee GA. Synthesis 1982; 508
  • 29 Kidwai M. Kukreja S. Thakur R. Lett. Org. Chem. 2006; 3: 135
  • 30 Aliev AG. Russ. J. Org. Chem. 2005; 41: 1192
  • 31 Bhosale S. Kurhade S. Vyas S. Palle VP. Bhuniya D. Tetrahedron 2010; 66: 9582
  • 32 Jose B. Jesus J. Victor R. Vicente G. J. Org. Chem. 1983; 48: 1379
  • 33 Barnes RP. Dodson LB. J. Am. Chem. Soc. 1945; 64: 132
  • 34 Lokesh B. Tomar SS. Pestic. Res. J. 2005; 17: 1
  • 35 Mitchell AD. Nonhebel DC. Tetrahedron 1976; 32: 2437