Synlett 2018; 29(08): 1117-1121
DOI: 10.1055/s-0037-1609303
letter
© Georg Thieme Verlag Stuttgart · New York

Studies towards the Synthesis of the Antibiotic Tetrodecamycin

Jing He
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK   Email: victor.lee@chem.ox.ac.uk
,
Jack E. Baldwin
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK   Email: victor.lee@chem.ox.ac.uk
,
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK   Email: victor.lee@chem.ox.ac.uk
› Author Affiliations
J.H. thanks the Clarendon Fund bursary, Oxford for financial support.
Further Information

Publication History

Received: 28 December 2017

Accepted after revision: 19 January 2018

Publication Date:
16 March 2018 (online)


Abstract

A study towards the natural product tetrodecamycin is reported. A modified Schlosser–Wittig reaction was utilized to prepare the precursor for the subsequent intramolecular Diels–Alder reaction, which delivered the trans-decalin ring of the natural product. The tetronic­ acid moiety of the molecule was prepared by a Dieckmann cyclization­. The cyclization of the tetronic acid to the trans-decalin double­ bond to form a seven-membered ring was examined.

Supporting Information

 
  • References and Notes

  • 1 Tsuchida T. Sawa R. Iinuma H. Nishida C. Kitoshita N. Takahashi Y. Naganawa H. Sawa T. Hamada M. J. Antibiot. 1994; 47: 386
  • 2 Tsuchida T. Iinuma H. Sawa R. Takahashi Y. Nakamura H. Nakamura KT. Sawa T. Naganawa H. J. Antibiot. 1995; 48: 1110
    • 3a Paintner FF. Bauschke G. Kestel M. Tetrahedron Lett. 2000; 41: 9977
    • 3b Paintner FF. Bauschke G. Polborn K. Tetra­hedron Lett. 2003; 44: 2549
    • 3c Paintner FF. Allmendinger L. Bauschke G. Berns C. Heisig P. Bioorg. Med. Chem. 2003; 11: 2823
    • 3d Warrington JM. Barriault L. Org. Lett. 2005; 7: 4589
    • 3e He J. Tchabanenko K. Adlington RM. Baldwin JE. Eur. J. Org. Chem. 2006; 4003
  • 4 Tatsuta K. Suzuki Y. Furuyama A. Ikegami H. Tetrahedron Lett. 2006; 47: 3595
  • 5 Snider BB. Lu Q. J. Org. Chem. 1996; 61: 2839
  • 6 Chong JM. Heuft MA. Rabbat P. J. Org. Chem. 2000; 65: 5837
    • 7a Schlosser M. Christmann KF. Angew. Chem., Int. Ed. Engl. 1966; 5: 126
    • 7b Schlosser M. Christmann KF. Piskala A. Chem. Ber. 1970; 103: 2814
    • 7c Schlosser M. Tuong HB. Schaub B. Tetrahedron Lett. 1985; 26: 311
    • 7d Wang Q. Deredas D. Huynh C. Schlosser M. Chem. Eur. J. 2003; 9: 570
    • 7e Schlosser M. Christmann K.-F. Piskala A. Chem. Ber. 1970; 103: 2814
    • 8a Frigerio M. Santagostino M. Tetrahedron Lett. 1994; 35: 8019
    • 8b Frigerio M. Santagostino M. Sputore S. Palmisano G. J. Org. Chem. 1995; 60: 7272
    • 8c Frigerio M. Santagostino M. Sputore S. J. Org. Chem. 1999; 64: 4537
    • 9a Bender JA. Arif AM. West FG. J. Am. Chem. Soc. 1999; 121: 7443
    • 9b Blanchette MA. Choy W. Davis JT. Essenfeld AP. Masamune S. Roush WR. Sakai T. Tetrahedron Lett. 1984; 25: 2183
  • 10 Sinz CJ. Rychnovsky SD. Tetrahedron 2002; 58: 6561
  • 11 Ley SV. Norman J. Griffith WP. Marsden SP. Synthesis 1994; 639
  • 12 Takao KI. Nagata S. Kobayashi S. Ito H. Taguchi T. Chem. Lett. 1998; 27: 447
  • 13 Shair MD. Yoon TY. Mosny KK. Chou TC. Danishefsky SJ. J. Am. Chem. Soc. 1996; 118: 9509
  • 14 To a solution of 6 (544.3 mg, 2.86 mmol) in anhydrous CH2Cl2 (12.0 mL) was added ZnCl2 (1.0 M in Et2O, 2.98 mL, 2.98 mmol). The mixture was stirred at r.t. for 4 d, diluted with saturated aq. NH4Cl (10 mL), and extracted with CH2Cl2 (2 × 20 mL). The combined organic layers were dried (Na2SO4), filtered, concentrated, and purified by chromatography on silica (CH2Cl2/PE, 1:3) to give 5 as a yellowish oil (360.4 mg, 66%). 1H NMR (500 MHz, CDCl3): δ = 1.03 (3 H, s, H-12), 1.06 (3 H, d, J = 7.0 Hz, H-13), 1.11–1.21 (2 H, m, 1 × H-7 and 1 × H-10), 1.30–1.50 (3 H, m, 1 × H-7, 1 × H-8, and 1 × H-9), 1.71–1.86 (5 H, m, H-1, H-6, 1 × H-8, 1 × H-9, and 1 × H-10), 2.02–2.05 (1 H, m, H-3), 5.40–5.43 (1 H, m, 1 × H-5), 5.47–5.52 (1 H, m, H-4), 9.62 (1 H, s, H-11).13C NMR (125.8 MHz, CDCl3): δ = 14.4 (C-12), 17.3 (C-13), 26.9 (C-9), 26.9 (C-8), 27.2 (C-7), 32.5 (C-10), 37.8 (C-6), 38.7 (C-1), 39.7 (C-3), 49.7 (C-2), 130.0 (C-4), 130.2 (C-5), 209.2 (C-11). GC–MS: m/z calcd for C13H24NO [MNH4 +]: 210.1858; found: 210.1858. IR (thin film): νmax = 3012 (w, C=C–H), 2925 (str, C–H stretch), 2855 (m, C–H stretch), 1725 (str, s, C=O), 1654 (w, C=C), 1448 (m, C–H deformation), 1374 (w), 1041 (w) cm–1.
  • 15 Eames J. Kuhnert N. Warren S. J. Chem. Soc. Perkin Trans. 1 2001; 138
  • 16 Tale RH. Sagar AD. Santan HD. Adude RN. Synlett 2006; 415
  • 17 Booth PM. Fox CM. J. Ley SV. J. Chem. Soc., Perkin Trans. 1 1987; 121
  • 18 Trend RM. Ramtohul YK. Stoltz BM. J. Am. Chem. Soc. 2005; 127: 17778
  • 19 Ferraz HM. C. Sano MK. Nunes MR. S. Bianco GG. J. Org. Chem. 2002; 67: 4122