Synlett 2018; 29(06): 764-768
DOI: 10.1055/s-0037-1609199
cluster
© Georg Thieme Verlag Stuttgart · New York

Rh(I)-Catalyzed Intramolecular [3+2] Cycloaddition of trans-2-Allene-Vinylcyclopropanes

Cheng-Hang Liu
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: yuzx@pku.edu.cn
,
Zhi-Xiang Yu*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: yuzx@pku.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (21672008) for financial support.
Further Information

Publication History

Received: 13 November 2017

Accepted after revision: 09 January 2017

Publication Date:
18 January 2018 (online)


Published as part of the Cluster C–C Activation

Abstract

An intramolecular [3+2] cycloaddition of trans-2-allene-­vinylcyclopropanes for the synthesis of bicyclo[3.3.0]octane derivatives is developed.

Supporting Information

 
  • References and Notes


    • Selected examples of [3+2] cycloadditions:
    • 2a Wilson JE. Fu GC. Angew. Chem. Int. Ed. 2006; 45: 1426
    • 2b Wei Y. Shi M. Org. Chem. Front. 2017; 4: 1876
    • 2c Trost BM. Stambuli JP. Silverman SM. Schwörer U. J. Am. Chem. Soc. 2006; 128: 13328
    • 2d Trost BM. Cramer N. Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
    • 2e Chang H.-T. Jayanth TT. Cheng C.-H. J. Am. Chem. Soc. 2007; 129: 4166
    • 2f Huang X. Zhang L. J. Am. Chem. Soc. 2007; 129: 6398
    • 2g Nishimura T. Yasuhara Y. Hayashi T. J. Am. Chem. Soc. 2007; 129: 7506
    • 3a Liu L. Montgomery J. J. Am. Chem. Soc. 2006; 128: 5348
    • 3b Lloyd-Jones GC. Angew. Chem. Int. Ed. 2006; 45: 6788
    • 3c Ogoshi S. Nagata M. Kurosawa H. J. Am. Chem. Soc. 2006; 128: 5350
    • 3d Liu L. Montgomery J. Org. Lett. 2007; 9: 3885
    • 3e Tamaki T. Ohashi M. Ogoshi S. Angew. Chem. Int. Ed. 2011; 50: 12067
    • 3f Liu Q.-S. Wang D.-Y. Yang Z.-J. Luan Y.-X. Yang J.-F. Li J.-F. Pu Y.-G. Ye M. J. Am. Chem. Soc. 2017; 139: 18150
  • 4 Wender PA. Paxton TJ. Williams TJ. J. Am. Chem. Soc. 2006; 128: 14814
    • 5a Lewis RT. Motherwell WB. Shipman M. J. Chem. Soc., Chem. Commun. 1988; 948
    • 5b Bapuji SA. Motherwell WB. Shipman M. Tetrahedron Lett. 1989; 30: 7107
    • 5c Motherwell WB. Shipman M. Tetrahedron Lett. 1991; 32: 1103
    • 5d Lautens M. Ren Y. Delanghe PH. M. J. Am. Chem. Soc. 1994; 116: 8821
    • 5e Lautens M. Ren Y. Delanghe P. Chiu P. Ma S. Colucci J. Can. J. Chem. 1995; 73: 1251
    • 5f Lautens M. Ren Y. J. Am. Chem. Soc. 1996; 118: 9597
    • 5g Lautens M. Ren Y. J. Am. Chem. Soc. 1996; 118: 10668
    • 5h Oh BH. Nakamura I. Saito S. Yamamoto Y. Tetrahedron Lett. 2001; 42: 6203
    • 6a Yao B. Li Y. Liang Z. Zhang Y. Org. Lett. 2011; 13: 640
    • 6b Kuila B. Mahajan D. Singh P. Bhargava G. Tetrahedron Lett. 2015; 56: 1307

      Examples of VCPs that contain strong electron-withdrawing groups:
    • 7a Shimizu I. Ohashi Y. Tsuji J. Tetrahedron Lett. 1985; 26: 3825
    • 7b Goldberg AF. G. Stoltz BM. Org. Lett. 2011; 13: 4474
    • 7c Trost BM. Morris PJ. Angew. Chem. Int. Ed. 2011; 50: 6167
    • 7d Hiroi K. Yamada A. Tetrahedron: Asymmetry 2000; 11: 1835
    • 7e Mei L.-y. Wei Y. Xu Q. Shi M. Organometallics 2012; 31: 7591
    • 7f Trost BM. Morris PJ. Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
    • 7g Halskov KS. Næsborg L. Tur F. Jørgensen KA. Org. Lett. 2016; 18: 2220
    • 7h Tombe R. Iwamoto T. Kurahashi T. Matsubara S. Synlett 2014; 25: 2281

      [3+2] Cycloaddition of VCPs:
    • 8a Jiao L. Ye S. Yu Z.-X. J. Am. Chem. Soc. 2008; 130: 7178
    • 8b Jiao L. Lin M. Yu Z.-X. Chem. Commun. 2010; 46: 1059
    • 8c Li Q. Jiang G.-J. Jiao L. Yu Z.-X. Org. Lett. 2010; 12: 1332
    • 8d Jiao L. Lin M. Yu Z.-X. J. Am. Chem. Soc. 2011; 133: 447
    • 8e Lin M. Kang G.-Y. Guo Y.-A. Yu Z.-X. J. Am. Chem. Soc. 2012; 134: 398
    • 8f Jiao L. Yu Z.-X. J. Org. Chem. 2013; 78: 6842

      [3+2] Cycloaddition of vinyl aziridines:
    • 9a Lin T.-Y. Zhu C.-Z. Zhang P. Wang Y. Wu H.-H. Feng J.-J. Zhang J. Angew. Chem. Int. Ed. 2016; 55: 10844
    • 9b Feng J.-J. Lin TY. Zhu CZ. Wang H. Wu H.-H. Zhang J. J. Am. Chem. Soc. 2016; 138: 2178
  • 10 Yu Z.-X. Cheong PH.-Y. Liu P. Legault CY. Wender PA. Houk KN. J. Am. Chem. Soc. 2008; 130: 2378
  • 11 Liu C.-H. Yu Z.-X. Angew. Chem. Int. Ed. 2017; 56: 8667
  • 12 Rh(CO)(PMe3)2Cl was synthesized according to the following report: Slough GA. Bergman RG. Heathcock CH. J. Am. Chem. Soc. 1989; 111: 938
  • 13 CCDC 1562354 (2a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 Intramolecular [3+2] Cycloaddition; Typical ProcedureTo a mixture of Rh(CO)(PMe3)2Cl (3.2 mg, 0.01 mmol, 5 mol%) and AgOTf (2.6 mg, 0.01 mmol, 5 mol%) was added DCE (2 mL) and the mixture was stirred at room temperature under argon for 5 min. A solution of 1a (0.2 mmol) in DCE (2 mL) was added at room temperature, and the resulting solution was immersed into a preheated oil bath and stirred at 80 °C. After 20 h, the reaction mixture was cooled to room temperature and concentrated. The crude product was purified by flash column chromatography on silica gel to afford the [3+2] cycloadduct 2a. Run 1: 1a (67.5 mg) was converted into 2a (49.8 mg), yield 74%. Run 2: 1a (66.7 mg) was converted into 2a (48.1 mg), yield 72%. So, the average yield of two runs was 73%; white solid; mp 99–102 °C; Rf  = 0.59 (PE/EtOAc, 5:1); 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 8.2 Hz, 2 H), 7.33 (d, J = 8.2 Hz, 2 H), 5.65 (ddd, J = 17.0, 10.2, 6.3 Hz, 1 H), 4.90 (m, 1 H), 4.83 (m, 1 H), 3.53–3.43 (m, 1 H), 3.34–3.25 (m, 1 H), 3.24–3.14 (m, 2 H), 3.14–3.05 (m, 1 H), 2.95 (dd, J = 9.5, 7.3 Hz, 1 H), 2.71–2.58 (m, 1 H), 2.44 (s, 3 H), 1.69 (dd, J = 12.5, 6.9 Hz, 1 H), 1.62 (s, 3 H), 1.58 (s, 3 H), 1.56–1.48 (m, 1 H); 13C NMR (101 MHz, CDCl3): δ = 143.3, 139.7 (+), 138.1, 133.2, 129.5 (+, 2 C), 127.6 (+, 2 C), 127.4, 112.9 (–), 52.8 (–), 52.2 (–), 47.1 (+), 45.8 (+), 41.7 (+), 36.8 (–), 22.0 (+), 21.5 (+), 21.0 (+), DEPT explanation in SI. HRMS (ESI): m/z [M + H]+ calcd for C19H26NO2S: 332.1679; found: 332.1670.
  • 15 A rationalization of [3+2] and [5+2] cycloadditions has been given in our previous publication, see Ref. 8a.
    • 16a Lee D.-Y. Kim I.-J. Jun C.-H. Angew. Chem. Int. Ed. 2002; 41: 3031
    • 16b Xu G. Renaud P. Angew. Chem. Int. Ed. 2016; 55: 3657
    • 16c Trost BM. Hansmann MM. Thaisrivongs DA. Angew. Chem. Int. Ed. 2012; 51: 4950
    • 16d Armesto D. Ortiz MJ. Agarrabeitia AR. Martin-Fontecha M. El-Boulifi N. Duran-Sampedro G. Enma D. Org. Lett. 2009; 11: 4148
    • 16e Eilbracht P. Balß E. Acker M. Chem. Ber. 1985; 118: 825