Synlett 2018; 29(03): 326-329
DOI: 10.1055/s-0036-1592062
letter
© Georg Thieme Verlag Stuttgart · New York

Short Synthesis of the Antidiabetic Octaketide Ethyl 2-(2,3,4-Trimethoxy-6-octanoylphenyl)acetate

Wei Sun
College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21960, Republic of Korea   Email: syseo@gachon.ac.kr
,
Yue Yuan
College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21960, Republic of Korea   Email: syseo@gachon.ac.kr
,
Bit Lee
College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21960, Republic of Korea   Email: syseo@gachon.ac.kr
,
Hee-Sook Jun
College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21960, Republic of Korea   Email: syseo@gachon.ac.kr
,
Dongyun Shin
College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21960, Republic of Korea   Email: syseo@gachon.ac.kr
,
Seung-Yong Seo*
College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21960, Republic of Korea   Email: syseo@gachon.ac.kr
› Author Affiliations
This research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health &Welfare (HI14C1135) and the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (NRF-2017M3A9C8027781).
Further Information

Publication History

Received: 05 October 2017

Accepted after revision: 24 October 2017

Publication Date:
28 November 2017 (online)


Abstract

A facile and practical approach for the synthesis of ethyl 2-(2,3,4-trimethoxy-6-octanoylphenyl)acetate, an antidiabetic octaketide analogue of cytosporone B, is described. Unlike known approaches for the synthesis of cytosporones and their analogues, the key step of the developed route is a Friedel–Crafts alkylation of 1-(3,4,5-trimethoxyphenyl)octan-1-one with ethyl chloro(methylthio)acetate, followed by desulfurization.

 
  • References

    • 1a Brady SF. Wagenaar MM. Singh MP. Janso JE. Clardy J. Org. Lett. 2000; 2: 4043
    • 1b Paranagama PA. Wijeratne EM. K. Gunatilaka AA. L. J. Nat. Prod. 2007; 70: 1939
  • 2 Zhan Y. Du X. Chen H. Liu J. Zhao B. Huang D. Li G. Xu Q. Zhang M. Weimer BC. Chen D. Cheng Z. Zhang L. Li Q. Li S. Zheng Z. Song S. Huang Y. Ye Z. Su W. Lin SC. Shen Y. Wu Q. Nat. Chem. Biol. 2008; 4: 548
  • 3 Liu J.-j. Zeng H.-n. Zhang L.-r. Zhan Y.-y. Chen Y. Wang Y. Wang J. Xiang S.-h. Liu W.-j. Wang W.-j. Chen H.-z. Shen Y.-m. Su W.-j. Huang P.-q. Zhang H.-k. Wu Q. Cancer Res. 2010; 70: 3628
  • 4 Xia Z. Cao X. Rico-Bautista E. Yu J. Chen L. Chen J. Bobkov A. Wolf DA. Zhang X.-K. Dawson MI. MedChemComm 2013; 4: 332
  • 5 Zhan Y.-y. Chen Y. Zhang Q. Zhuang J.-j. Tian M. Chen H.-z. Zhang L.-r. Zhang H.-k. He J.-p. Wang W.-j. Wu R. Wang Y. Shi C. Yang K. Li A.-z. Xin Y.-z. Li T.-y. Yang JY. Zheng Z.-h. Yu C.-d. Lin S.-C. Chang C. Huang P.-q. Lin T. Wu Q. Nat. Chem. Biol. 2012; 8: 897
    • 6a Huang H. Zhang L. Zhang X. Ji X. Ding X. Shen X. Jiang H. Liu H. Chin. J. Chem. 2010; 28: 1041
    • 6b Zamberlam CE. M. Meza A. Braga Leite C. Marques MR. de Lima DP. Beatriz A. J. Braz. Chem. Soc. 2012; 23: 124
    • 6c Lu C. Li J. Xu H. Shen Y. Youji Huaxue 2015; 35: 2013
  • 7 von Delius M. Le CM. Dong VM. J. Am. Chem. Soc. 2012; 134: 15022
  • 8 Yoshida H. Morishita T. Ohshita J. Chem. Lett. 2010; 39: 508
  • 9 Zhang H. Huang P. Zeng H. Wu Q. Shen Y. Hongkui Z. Peiqiang H. Huini Z. Qiao W. Yuemao S. CN 101407460, 2009
  • 10 Tambar UK. Stoltz BM. J. Am. Chem. Soc. 2005; 127: 5340
  • 11 For a recent review, see: Priebbenow DL. Bolm C. Chem. Soc. Rev. 2013; 42: 7870
  • 12 Mamone P. Danoun G. Goossen LJ. Angew. Chem. Int. Ed. Engl. 2013; 52: 6704
  • 13 Bachmann WE. Struve WS. Org. React. (N. Y.) 1942; 1: 38 ; DOI: 10.1002/0471264180.or001.02
    • 14a Li Y.-J. Qin Y.-J. Makawana JA. Wang Y.-T. Zhang Y.-Q. Zhang Y.-L. Yang M.-R. Jiang A.-Q. Zhu H.-L. Bioorg. Med. Chem. 2014; 22: 4312
    • 14b Łozowicka B. Kaczyński P. Pest Manage. Sci. 2013; 69: 964
    • 15a Song B. Rudolphi F. Himmler T. Goossen LJ. Adv. Synth. Catal. 2011; 353: 1565
    • 15b Kumar YS. Dasaradhan C. Prabakaran K. Manivel P. Nawaz Khan F.-R. Jeong ED. Chung EH. Tetrahedron Lett. 2015; 56: 941
    • 15c Madanahalli Ranganath Rao J. Gurram Ranga M. Pachiyappan S. Simon E. WO 2014202528, 2014
    • 15d Wong B. Linghu X. Crawford JJ. Drobnick J. Lee W. Zhang H. Tetrahedron 2014; 70: 1508
    • 16a Tamura Y. Choi H. Shindo H. Ishibashi H. Chem. Pharm. Bull. 1982; 30: 915
    • 16b Sinha S. Mandal B. Chandrasekaran S. Tetrahedron Lett. 2000; 41: 9109
  • 17 White solid. 1H NMR (600 MHz, CDCl3) δ = 7.02 (s, 1 H), 4.14 (q, J = 7.2 Hz, 2 H), 3.90 (s, 3 H), 3.89 (s, 3 H), 3.87 (s, 2 H), 3.82 (s, 3 H), 2.84 (t, J = 7.2 Hz, 2 H), 1.63–1.68 (m, 2 H), 1.24–1.32 (m, 11 H), 0.86 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3) δ = 203.1, 172.1, 152.9, 151.9, 145.2, 133.7, 121.9, 108.6, 61.2, 60.9, 60.7, 56.3, 41.1, 32.0, 31.8, 29.3, 29.2, 24.5, 22.7, 14.3, 14.2.�