Synthesis 2018; 50(13): 2533-2545
DOI: 10.1055/s-0036-1592007
paper
© Georg Thieme Verlag Stuttgart · New York

Dimethylprolinol Versus Diphenylprolinol in CuBr2-Catalyzed Enantioselective Allenylation of Terminal Alkynols

Dengke Ma
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China   eMail: Xinhuangzju@zju.edu.cn   eMail: masm@sioc.ac.cn
,
Xinyu Duan
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China   eMail: Xinhuangzju@zju.edu.cn   eMail: masm@sioc.ac.cn
,
Chunling Fu
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China   eMail: Xinhuangzju@zju.edu.cn   eMail: masm@sioc.ac.cn
,
Xin Huang*
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China   eMail: Xinhuangzju@zju.edu.cn   eMail: masm@sioc.ac.cn
,
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China   eMail: Xinhuangzju@zju.edu.cn   eMail: masm@sioc.ac.cn
› Institutsangaben
National Natural Science Foundation of China (21572202).
Weitere Informationen

Publikationsverlauf

Received: 24. März 2018

Accepted after revision: 30. März 2018

Publikationsdatum:
08. Mai 2018 (online)


Abstract

The CuBr2-catalyzed enantioselective allenylation of terminal alkynols with carbon chains of different lengths has been developed. Compared with (S)-α,α-diphenylprolinol, the reaction using (S)-α,α-dimethylprolinol as the chiral amine afforded optically active 1,3-disubstuted allenols with higher ee-values. Both aliphatic and aromatic aldehydes could be applied. The naturally occurring phlomic acid was synthesized in four steps from commercially available hex-5-yn-1-ol.

Supporting Information

 
  • References


    • For selected reviews on the synthesis of optically active allenes, see:
    • 1a Chu W. Zhang Y. Wang J. Catal. Sci. Technol. 2017; 7: 4570
    • 1b Ye J. Ma S. Org. Chem. Front. 2014; 1: 1210
    • 1c Neff RK. Frantz DE. ACS Catal. 2014; 4: 519
    • 1d Yu S. Ma S. Chem. Commun. 2011; 47: 5384
    • 1e Ogasawara M. Tetrahedron: Asymmetry 2009; 20: 259
    • 1f Brummond KM. De Forrest JE. Synthesis 2007; 795
    • 1g Krause N. Hoffmann-Röder A. Tetrahedron 2004; 60: 11671
    • 1h Sydnes LK. Chem. Rev. 2003; 103: 1133
    • 2a Cambie RC. Hirschberg A. Jones ER. H. Lowe G. J. Chem. Soc. C 1963; 4120
    • 2b Bew RE. Chapman JR. Jones ER. H. Lowe BE. Lowe G. J. Chem. Soc. C 1966; 129
    • 2c de Graaf W. Smits A. Boersma J. van Koten G. Tetrahedron 1988; 44: 6699
    • 2d Daviesa DG. Hodge P. Org. Biomol. Chem. 2005; 3: 1690
    • 2e Zhang Y. Wu Y. Org. Biomol. Chem. 2010; 8: 4744
    • 3a Megati S. Goren Z. Silverton JV. Orlina J. Nishimura H. Shirasaki T. Mitsuya H. Zemlicka J. J. Med. Chem. 1992; 35: 4098
    • 3b Egron D. Périgaud C. Gosselin G. Aubertin A. Gatanaga H. Mitsuya H. Zemlicka J. Imbacha J. Bioorg. Med. Chem. Lett. 2002; 12: 265
    • 4a Jones BC. N. M. Silverton JV. Simons C. Megati S. Nishimura H. Maeda Y. Mitsuya H. Zemlicka J. J. Med. Chem. 1995; 38: 1397
    • 4b Zhu Y. Pai SB. Liu S. Grove KL. Jones BC. N. M. Simons C. Zemlicka J. Cheng Y. Antimicrob. Agents Chemother. 1997; 41: 1755
    • 5a Hoffmann-Röder A. Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
    • 5b Bagby MO. Smith CR. Jr. Wolff IA. J. Org. Chem. 1965; 30: 4227
    • 5c Landor SR. Punja N. Tetrahedron Lett. 1966; 40: 4905
    • 5d Mikalaijczak KL. Rogers MF. Smith JunC. R. Wolff IA. Biochem. J. 1967; 105: 1245
    • 5e Cowie JS. Landor PD. Landor SR. Punja N. J. Chem. Soc., Perkin Trans. 1 1972; 2197
    • 5f Horler DF. J. Chem. Soc. C 1970; 859
    • 5g Kato T. Ishigami K. Akasaka K. Watanabe H. Tetrahedron 2009; 65: 6953
    • 5h Ishigami K. Kato T. Akasaka K. Watanabe H. Tetrahedron Lett. 2008; 49: 5077
    • 5i Yu Q. Ma S. Eur. J. Org. Chem. 2015; 1596

      For selected recent reviews, see:
    • 6a Bras JL. Muzart J. Chem. Soc. Rev. 2014; 43: 3003
    • 6b Muñoz MP. Chem. Soc. Rev. 2014; 43: 3164
    • 6c Adams CS. Weatherly CD. Burke EG. Schomaker JM. Chem. Soc. Rev. 2014; 43: 3136

      For selected recent reviews, see:
    • 7a Neff RK. Frantz DE. Tetrahedron 2015; 71: 7
    • 7b Ye J. Ma S. Acc. Chem. Res. 2014; 47: 989

    • For selected reports published after 2014, see:
    • 7c Brooner RE. M. T. Brown J. Chee MA. Widenhoefer RA. Organometallics 2016; 35: 2014
    • 7d Qiu Y. Zhou J. Li J. Fu C. Guo Y. Wang H. Ma S. Chem. Eur. J. 2015; 21: 15939
    • 7e Burrows LC. Jesikiewicz LT. Lu G. Geib SJ. Liu P. Brummond KM. J. Am. Chem. Soc. 2017; 139: 15022

      For selected recent reports on the synthesis of functionalized optically active allenes, see:
    • 8a Wang Y. Zhang W. Ma S. J. Am. Chem. Soc. 2013; 135: 11517
    • 8b Chu W.-D. Zhang L. Zhang Z. Zhou Q. Mo F. Zhang Y. Wang J. J. Am. Chem. Soc. 2016; 138: 14558
    • 8c Yao Q. Liao Y. Lin L. Lin X. Ji J. Liu X. Feng X. Angew. Chem. Int. Ed. 2016; 55: 1859
    • 8d Liu Y. Liu X. Hu H. Guo J. Xia Y. Lin L. Feng X. Angew. Chem. Int. Ed. 2016; 55: 4054
    • 8e Dai J. Duan X. Zhou J. Fu C. Ma S. Chin. J. Chem. 2018; 36: 387
    • 8f Jiang Y. Diagne AB. Thomson RJ. Schaus SE. J. Am. Chem. Soc. 2017; 139: 1998
    • 8g Qian D. Wu L. Lin Z. Sun J. Nat. Commun. 2017; 8: 567
    • 8h Poh J.-S. Makai S. von Keutz T. Tran DN. Battilocchio C. Pasau P. Ley SV. Angew. Chem. Int. Ed. 2017; 56: 1864
    • 9a Huang X. Cao T. Han Y. Jiang X. Lin W. Zhang J. Ma S. Chem. Commun. 2015; 51: 6956
    • 9b Huang X. Xue C. Fu C. Ma S. Org. Chem. Front. 2015; 2: 1040
    • 9c Tang X. Huang X. Cao T. Han Y. Jiang X. Lin W. Tang Y. Zhang J. Yu Q. Fu C. Ma S. Org. Chem. Front. 2015; 2: 688
  • 10 Jiang X. Zhang J. Ma S. J. Am. Chem. Soc. 2016; 138: 8344

    • For selected examples, see:
    • 11a Wang D. Gautam LN. S. Bollinger C. Harris A. Li M. Shi X. Org. Lett. 2011; 13: 2618
    • 11b Stoll AH. Blakey SB. J. Am. Chem. Soc. 2010; 132: 2108
    • 11c Evans RJ. D. Landor SR. Regan JP. J. Chem. Soc. Perkin Trans. 1 1974; 552
    • 11d Gorins G. Kuhnert L. Johnson CR. Marnett LJ. J. Med. Chem. 1996; 39: 4871
    • 11e Carreira EM. Hastings CA. Shepard MS. Yerkey LA. Millward DB. J. Am. Chem. Soc. 1994; 116: 6622
    • 11f Shepard MS. Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
  • 12 Beveridge RE. Batey RA. Org. Lett. 2013; 15: 3086
  • 13 Ma S. Liu J. Li S. Chen B. Cheng J. Kuang J. Liu Y. Wan B. Wang Y. Ye J. Yu Q. Yuan W. Yu S. Adv. Synth Catal. 2011; 353: 1005
  • 14 Morita N. Krause N. Eur. J. Org. Chem. 2006; 4634
  • 15 Aitzetmüller K. Tsevegsüren N. Vosmann K. Fett/Lipid 1997; 99: 74
  • 16 Mukai C. Nomura I. Kitagaki S. J. Org. Chem. 2003; 68: 1376
    • 17a Lewis A. Ryan MD. Gani D. J. Chem. Soc., Perkin Trans. 1 1998; 3767
    • 17b Foley DJ. Doveston RG. Churcher I. Nelson A. Marsden SP. Chem. Commun. 2015; 51: 11174
    • 17c Chao C. Yuan D. Zhao B. Yao Y. Org. Lett. 2015; 17: 2242