Synthesis 2018; 50(11): 2200-2210
DOI: 10.1055/s-0036-1591972
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Aryl-3-(arylselanyl)imidazo[1,2-a]pyridines: Copper­-Catalyzed One-Pot, Two-Step Se-Arylation of Selenium with Imidazopyridines and Triarylbismuthanes

Kaito Kondo
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan   Email: m-matsu@dpc.agu.ac.jp   Email: s-yasuik@dpc.agu.ac.jp
,
Mio Matsumura*
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan   Email: m-matsu@dpc.agu.ac.jp   Email: s-yasuik@dpc.agu.ac.jp
,
Keiko Kanasaki
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan   Email: m-matsu@dpc.agu.ac.jp   Email: s-yasuik@dpc.agu.ac.jp
,
Yuki Murata
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan   Email: m-matsu@dpc.agu.ac.jp   Email: s-yasuik@dpc.agu.ac.jp
,
Naoki Kakusawa
b   Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazsawa 920-1181, Japan
,
Shuji Yasuike*
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan   Email: m-matsu@dpc.agu.ac.jp   Email: s-yasuik@dpc.agu.ac.jp
› Author Affiliations
This work was supported by the Institute of Pharmaceutical Life Sciences, Aichi Gakuin University and the Special Research Fund from Hokuriku University.
Further Information

Publication History

Received: 01 February 2018

Accepted after revision: 06 March 2018

Publication Date:
12 April 2018 (online)


Abstract

A simple and general method for the synthesis of 2-aryl-3-(arylselanyl)imidazo[1,2-a]pyridines is described. A one-pot, two-step reaction between triarylbismuthanes and diimidazopyridyl diselenides, generated from imidazo[1,2-a]pyridines and Se powder in the presence of CuI and 1,10-phenanthroline, affords 3-selanylimidazopyridines in moderate to excellent yields under aerobic conditions. The reactions proceed efficiently and the selenium and all the aryl groups on bismuth are transferred to the coupling products. Triarylbismuthanes give better results compared to other aryl donors containing elements such as boron, silicon, tin, and iodine.

Supporting Information

 
  • References

    • 1a Wirth T. Organoselenium Chemistry . Wiley-VCH; Weinheim: 2012
    • 1b Ogawa A. In Main Group Metals in Organic Synthesis . Vol. 2. Yamamoto H. Oshima K. Chap. 15 Wiley-VCH; Weinheim: 2004: 813
    • 1c Santoro S. Azeredo JB. Nascimento V. Sancineto L. Brage AL. Santi C. RSC Adv. 2014; 4: 31521
    • 1d Manjare ST. Kim Y. Churchill DG. Acc. Chem. Res. 2014; 47: 2985
    • 1e Marini F. Sternativo S. Synlett 2013; 24: 11
    • 1f Mukherjee AJ. Zade SS. Singh H.-B. Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 1g Freudendahl DM. Shahzad SA. Wirth T. Eur. J. Org. Chem. 2009; 1649
    • 3a Ranu BC. Dey R. Chatterjee T. Ahammed S. ChemSusChem 2012; 5: 22
    • 3b Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 3c Beletskaya IP. Ananikov VP. In Catalyzed Carbon-Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2011. Chap. 3, 69
    • 3d Qiao JX. Lam PY. S. Synthesis 2011; 829
    • 3e Beletskaya IP. Ananikov VP. Eur. J. Org. Chem. 2007; 3431
    • 4a Li Z. Hong J. Zhou X. Tetrahedron 2011; 67: 3690
    • 4b Shibahara F. Kanai T. Yamaguchi E. Kamei A. Yamauchi T. Murai T. Chem. Asian J. 2014; 9: 237
    • 5a Rosario AR. Casola KK. Oliveira CE. S. Zeni G. Adv. Synth. Catal. 2013; 355: 2960
    • 5b Gandeepan P. Mo J. Ackermann L. Chem. Commun. 2017; 53: 5906
  • 6 Gao C. Wu G. Min L. Liu M. Gao W. Ding J. Chen J. Huang X. Wu H. J. Org. Chem. 2017; 82: 250
  • 7 Luo D. Wu G. Yang H. Liu M. Gao W. Huang X. Chen J. Wu H. J. Org. Chem. 2016; 81: 4485
  • 8 Cera G. Ackermann L. Chem. Eur. J. 2016; 22: 8475
    • 9a Enguehard-Gueiffier C. Gueiffer A. Mini Rev. Med. Chem. 2007; 7, 888
    • 9b Goel R. Luxami V. Paul K. Curr. Top. Med. Chem. 2016; 16: 3590
  • 10 Wan J. Zheng C.-J. Fung M.-K. Liu X.-K. Lee C.-S. Zhang X.-H. J. Mater. Chem. 2012; 22: 4502
    • 11a Katsura Y. Nishino S. Takasugi H. Chem. Pharm. Bull. 1991; 39: 2937
    • 11b Abe Y. Kayakiri H. Satoh S. Inoue T. Sawada Y. Inamura N. Asano M. Aramori I. Hatori C. Sawai H. Oku T. Tanaka H. J. Med. Chem. 1998; 41: 4587
    • 11c Jain AN. J. Med. Chem. 2004; 47: 947
    • 11d Hanson SM. Morlock EV. Satyshur KA. Czajkowski C. J. Med. Chem. 2008; 51: 7243
    • 11e Boggs S. Elitzin VI. Gudmundsson K. Martin MT. Sharp MJ. Org. Process Res. Dev. 2009; 13: 781
    • 11f Linton A. Kang P. Ornelas M. Kephart S. Hu Q. Pairish M. Jiang Y. Guo C. J. Med. Chem. 2011; 54: 7705
  • 12 Vieira BM. Thurow S. da Costa M. Casaril AM. Domingues M. Schumacher RF. Perin G. Alves D. Savegnago L. Lenardão EJ. Asian J. Org. Chem. 2017; 6: 1635
  • 13 Gao Z. Zhu X. Zhang R. RSC Adv. 2014; 4: 19891
  • 14 Ji X.-M. Zhou S.-J. Chen F. Zhang X.-G. Tang R.-Y. Synthesis 2015; 47: 659
  • 15 Rafique J. Saba S. Rosário AR. Braga AL. Chem. Eur J. 2016; 22: 11854
  • 16 Jana S. Chakraborty A. Mondal S. Hajra A. RSC Adv. 2015; 5: 77534
  • 17 Ge W. Zhu X. Wei Y. Eur. J. Org. Chem. 2013; 6015
    • 18a Gagnon A. Dansereau J. Le Roch A. Synthesis 2017; 49: 1707
    • 18b Condon S. Pichon C. Davi M. Org. Prep. Proced. Int. 2014; 46: 89
    • 18c Ollevier T. Bismuth-Mediated Organic Reactions: Topics in Current Chemistry 311. Springer; Heidelberg: 2012
    • 18d Matano Y. In Main Group Metals in Organic Synthesis . Vol. 2. Yamamoto H. Oshima K. Wiley-VCH; Weinheim: 2004: 753
    • 18e Elliott GI. Konopelski JP. Tetrahedron 2001; 57: 5683
    • 19a Arnauld T. Barton DH. R. Normant J.-F. J. Org. Chem. 1999; 64: 3722
    • 19b Kobiki Y. Kawaguchi S. Ohe T. Ogawa A. Beilstein J. Org. Chem. 2013; 9: 1141
    • 20a Matsumura M. Shibata K. Ozeki S. Yamada M. Murata Y. Kakusawa N. Yasuike S. Synthesis 2016; 48: 730
    • 20b Matsumura M. Kumagai H. Murata Y. Kakusawa N. Yasuike S. J. Organomet. Chem. 2016; 807: 11
  • 21 Matsumura M. Sakata Y. Iwase A. Kawahata M. Kitamura Y. Murata Y. Kakusawa N. Yamaguchi K. Yausike S. Tetrahedron Lett. 2016; 57: 5484
  • 22 Sun P. Jiang M. Wei W. Min Y. Zhang W. Li W. Yang D. Wang H. J. Org. Chem. 2017; 82: 2906
  • 23 Combes S. Finet J.-P. Synth. Commun. 1996; 26: 4569
  • 24 Murafuji T. Nishio K. Nagasue M. Tanabe A. Aono M. Sugihara Y. Synthesis 2000; 1208
  • 25 Arnauld T. Barton DH. R. Normant J.-F. J. Org. Chem. 1999; 64: 3722
  • 26 Matano Y. Kinoshita M. Suzuki H. Bull. Chem. Soc. Jpn. 1992; 65: 3504
  • 27 Petiot P. Gagnon A. Eur. J. Org. Chem. 2013; 5282
  • 28 Chen Z. Cao G. Zhang F. Li H. Xu J. Miao M. Ren H. Synlett 2017; 28: 1795
  • 29 El Kazzouli S. du Bellay AG. Berteina-Raboin S. Delagrange P. Caignard D.-H. Guillaumet G. Eur. J. Med. Chem. 2011; 46: 4252
  • 30 McDonald IM. Peese KM. Org. Lett. 2015; 17: 6002
  • 31 Yu J. Jin Y. Zhang H. Yang X. Fu H. Chem. Eur. J. 2013; 19: 16804
  • 32 Redon S. Kosso AR. O. Broggi J. Vanelle P. Tetrahedron Lett. 2017; 58: 2771
  • 33 Rafique J. Saba S. Rosário AR. Braga AL. Chem. Eur. J. 2016; 22: 11854