Synlett 2018; 29(08): 1076-1078
DOI: 10.1055/s-0036-1591942
letter
© Georg Thieme Verlag Stuttgart · New York

A Scalable Approach for the Synthesis of Epothilone Thiazole Fragment (C12–C21 unit) Via Wacker Oxidation

Rajashekar Kommera
a   Department of Chemistry, Jawaharlal Nehru Technological University College of Engineering, Hyderabad 500085, India
b   Department of Research and Development, MSN R&D Center, Pashamylaram, Medak, Telangana 502307, India
,
Venkateshwer Reddy Kasireddy
c   Department of Chemistry, CMR Engineering College, Jawaharlal Nehru Technological University, Hyderabad 501401, India
,
Venkat Reddy Ghojala
b   Department of Research and Development, MSN R&D Center, Pashamylaram, Medak, Telangana 502307, India
,
Markandeya Bekkam
b   Department of Research and Development, MSN R&D Center, Pashamylaram, Medak, Telangana 502307, India
,
Pradeep Rebelli
b   Department of Research and Development, MSN R&D Center, Pashamylaram, Medak, Telangana 502307, India
,
Jayaprakash Rao Yerrabelly*
d   Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad 500004, India
e   Department of Organic Chemistry, Telangana University, Nizamabad, Telangana 503322, India   Email: yjpr_19@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 17 December 2017

Accepted after revision: 29 January 2018

Publication Date:
22 February 2018 (online)


Abstract

A new scalable synthesis of the common thiazole fragment (C12–C21 unit) of epothilone family of molecules (epothilone A–D) has been developed via palladium-catalyzed Wacker oxidation as a key step using (S)-2,2,3,3,9,9,10,10-octamethyl-5-vinyl-4,8-dioxa-3,9-disilaundecane, which has been prepared from commercially available chiral synthon (R)-ethyl-4-cyano-3-hydroxybutanoate. Then further chemical modifications using Horner–Wadsworth–Emmons reaction and Wittig reaction result in the common thiazole fragment (C12–C21 unit) in good yields.

Supporting Information

 
  • References and Notes

  • 1 Newman DJ. Cragg GM. J. Nat. Prod. 2007; 70: 461
  • 2 Höfle G. Bedorf N. Steinmetz H. Schomburg D. Gerth K. Reichenbach H. Angew. Chem. 1996; 35: 1567
  • 3 Gerth K. Bedorf N. Höfle G. Irschik H. Reichenbach H. J. Antibiot. 1996; 49: 560
  • 4 Cortes J. Baselga J. Oncologist 2007; 12: 271
  • 5 Goodin S. Am. J. Health Syst. Pharm. 2008; 65: S10 (10 Supplement 3)
  • 6 Schinzer D. Limberg A. Böhm OM. Chem. Eur. J. 1996; 2: 1477
  • 7 Schinzer D. Limberg A. Böhm OM. Bauer A. Chem. Eur. J. 1999; 5: 2483
  • 8 Nicolaou KC. Ninkovic S. Sarabia F. Vourloumis D. He Y. Vallberg H. Finlay MR.V. Yang Z. J. Am. Chem. Soc. 1997; 119: 7974
  • 9 Taylor RE. Chen Y. Org. Lett. 2001; 3: 2221
  • 10 Reiff EA. Nair SK. Narayan Reddy BS. Inagaki J. Henri JT. Greiner JF. Georg GI. Tetrahedron Lett. 2004; 45: 5845
  • 11 For the import data and price of ethyl 4-cyano-3-hydroxybutanoate in India (Zauba), see: https://www.zauba.com/import-ethyl-4-cyano-3-hydroxy-butanoate-hs-code.html.
  • 12 Soai K. Oyamada H. Ookawa A. Synth. Commun. 1982; 12: 463
  • 13 Crimmins MT. Slade DJ. Org. Lett. 2006; 8: 2191
  • 14 Tsuji J. Nagashima H. Nemoto H. Org. Synth., Coll. Vol. 7. 137. Wiley; New York: 1990
  • 15 Smith III AB. Cho YS. Friestad GK. Tetrahedron Lett. 1998; 39: 8765
  • 16 Schinzer D. Bauer A. Schieber J. Chem. Eur. J. 1999; 5: 2492