Synthesis 2018; 50(09): 1827-1840
DOI: 10.1055/s-0036-1591916
paper
© Georg Thieme Verlag Stuttgart · New York

(R)- and (S)-Proline-Derived Chiral Phosphoramides as Organo­catalysts for the Enantiodivergent Aldol Reaction of Isatins with Cyclohexanone in the Presence of Water

Carlos Cruz-Hernández
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico
,
Perla E. Hernández-González
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico
,
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico
b   El Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico   Email: juaristi@relaq.mx
› Author Affiliations
This work was financially supported by CONACYT (Consejo Nacional de Ciencia y Tecnología) Mexico via Grant 324029.
Further Information

Publication History

Received: 10 November 2017

Accepted after revision: 20 December 2017

Publication Date:
05 February 2018 (online)


Abstract

Novel organocatalysts derived from (R)- and (S)-proline and incorporating a chiral phosphoramide fragment were rationally designed and subsequently synthesized. These chiral compounds catalyze the enantioselective aldol addition reaction of cyclohexanone to prochiral isatins in the presence of water. These observations are particularly relevant since reports of asymmetric aldol reactions between cyclohexanone­ and isatins catalyzed by chiral secondary amines remain scarce, with primary amines being the most studied and successful catalysts. The present report includes a thorough evaluation of the new bifunctional catalysts that actually give rise to either enantiomer of the chiral product by proper selection of the configuration of the proline moiety.

Supporting Information

 
  • References

    • 1a Hajos ZG. Parrish DR. J. Org. Chem. 1974; 39: 1615
    • 1b Eder U. Sauer GR. Wiechert R. Angew. Chem., Int. Ed. Engl. 1971; 10: 496
    • 2a Denmark SE. Winter SB. D. Su X. Wong K.-T. J. Am. Chem. Soc. 1996; 118: 7404
    • 2b Denmark SE. Wong K.-T. Stavenger RA. J. Am. Chem. Soc. 1997; 119: 2333
    • 2c Denmark SE. Stavenger RA. J. Org. Chem. 1998; 63: 9524
    • 2d Denmark SE. Stavenger RA. Wong K.-T. Su X. J. Am. Chem. Soc. 1999; 121: 4982
    • 3a Iseki K. Kuroki Y. Takahashi M. Kobayashi Y. Tetrahedron Lett. 1996; 37: 5149
    • 3b Iseki K. Kuroki Y. Takahashi M. Kishimoto S. Kobayashi Y. Tetrahedron 1997; 53: 3513
    • 3c Iseki K. Mizuno S. Kuroki Y. Kobayashi Y. Tetrahedron Lett. 1998; 39: 2767
    • 3d Iseki K. Mizuno S. Kuroki Y. Kobayashi Y. Tetrahedron 1999; 55: 977
  • 4 Sigman MS. Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
  • 5 Dalko PI. Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 6a List B. Lerner RA. Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 6b Ahrendt KA. Borths CJ. MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 7a List B. Tetrahedron 2002; 58: 5573
    • 7b Notz W. Tanaka F. Barbas CF. III. Acc. Chem. Res. 2004; 37: 580
    • 7c Seayad J. List B. Org. Biomol. Chem. 2005; 3: 719
    • 7d Enders D. Grondal C. Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 7e MacMillan DW. C. Nature 2008; 455: 304
    • 7f Dondoni A. Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 7g Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 7h Bertelsen S. Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
    • 7i Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
    • 7j Wang H. Lu H. Xu P.-F. Acc. Chem. Res. 2015; 48: 1832
    • 8a Scheffler U. Mahrwald R. Chem. Eur. J. 2013; 19: 14346
    • 8b Gaunt MJ. Johansson CC. C. McNally A. Vo NT. Drug Discovery Today 2007; 12: 8
    • 8c de Figueiredo RM. Christmann M. Eur. J. Org. Chem. 2007; 2575
    • 8d Alemán J. Cabrera S. Chem. Soc. Rev. 2013; 42: 774
    • 9a Chen X.-H. Yu J. Gong L.-Z. Chem. Commun. 2010; 46: 6437
    • 9b Trost BM. Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 9c Bisai V. Singh VK. Tetrahedron 2012; 68: 4541
    • 9d Guillena G. In Modern Methods in Stereoselective Aldol Reactions . Mahrwald R. Wiley-VCH; Weinheim: 2013: 155
    • 9e Obregón-Zúñiga A. Milán M. Juaristi E. Org. Lett. 2017; 19: 1108
    • 10a Luppi G. Cozzi PG. Monari M. Kaptein B. Broxterman QB. Tomasini C. J. Org. Chem. 2005; 70: 7418
    • 10b Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
    • 10c Kumar A. Chimni SS. RSC Adv. 2012; 2: 9748
    • 10d Hernández JG. García-López V. Juaristi E. Tetrahedron 2012; 68: 92
    • 10e Mohammadi S. Heiran R. Herrera RP. Marqués-López E. ChemCatChem 2013; 5: 2131
    • 10f Ziarani GM. Mirandi R. Lashgari N. Tetrahedron: Asymmetry 2015; 26: 517
    • 10g Reddy UV. S. Chennapuram M. Seki K. Seki C. Anusha B. Kwon E. Okuyama Y. Uwai K. Tokiwa M. Takeshita M. Nakano H. Eur. J. Org. Chem. 2017; 3874
    • 11a Pajouhesh H. Parson R. Popp FD. J. Pharm. Sci. 1983; 72: 318
    • 11b Codding PW. Lee TA. Richardson JF. J. Med. Chem. 1984; 27: 649
    • 11c Kamano Y. Zhang H.-P. Ichihara Y. Kizu H. Komiyama K. Pettit GR. Tetrahedron Lett. 1995; 36: 2783
    • 11d Khono J. Koguchi Y. Nishio M. Nakao K. Juroda M. Shimizu R. Ohnuki T. Komatsubara S. J. Org. Chem. 2000; 65: 990
    • 11e Tang Y.-Q. Sattler I. Thiericke R. Grabley S. Feng X.-Z. Eur. J. Org. Chem. 2001; 261
    • 11f Tokunaga T. Home WE. Nagamine J. Kawamura T. Taiji M. Nagata R. Bioorg. Med. Chem. Lett. 2005; 15: 1789
    • 11g Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 11h Sultan C. Mikhail C. Shifeng L. Jianyu S. Vandna R. Ray C. Wendy Y. Rainbow K. Jianmin F. Jay CA. Bioorg. Med. Chem. Lett. 2011; 21: 3676
    • 11i Parvathaneni SP. Pamanji R. Janapala VR. Uppalapati SK. Balasubramanian S. Mandapati MR. Eur. J. Med. Chem. 2014; 84: 155
    • 12a Malkov AV. Kabeshov MA. Bella M. Kysilka O. Malyshev DA. Pluháčková K. Kočouský P. Org. Lett. 2007; 9: 5473
    • 12b Nakamura S. Hara N. Nukashima H. Kubo K. Shibata N. Toru T. Chem. Eur. J. 2008; 14: 8079
    • 12c Corrêa RJ. Garden SJ. Angelici G. Tomasini C. Eur. J. Org. Chem. 2008; 736
    • 12d Angelici G. Corrêa RJ. Garden S. Tomasini C. Tetrahedron Lett. 2009; 50: 814
    • 12e Guo Q. Bhanushali M. Zhao C.-G. Angew. Chem. Int. Ed. 2010; 49: 9460
    • 12f Hara N. Nakamura S. Shibata N. Toru T. Adv. Synth. Catal. 2010; 352: 1621
    • 12g Person AJ. Panda S. Org. Lett. 2011; 13: 5548
    • 12h Tanimura Y. Yasunaga K. Ishimaru K. Tetrahedron 2014; 70: 2816
    • 12i Lu H. Bai J. Xu J. Yang T. Lin X. Li J. Ren F. Tetrahedron 2015; 71: 2610
    • 12j Yadav GD. Singh S. Tetrahedron: Asymmetry 2016; 27: 123
    • 13a Ricci A. Bernardi L. Gioia C. Verucci S. Robitzer M. Quignard F. Chem. Commun. 2010; 46: 6268
    • 13b Shen C. Shen F. Xia H. Zhang P. Chen X. Tetrahedron: Asymmetry 2011; 22: 708
    • 13c Raj M. Veerasamy N. Singh VK. Tetrahedron Lett. 2010; 51: 2157
    • 13d Guo Q. Zhao JC.-G. Tetrahedron Lett. 2012; 53: 1768
    • 13e Liu Y. Gao P. Wang J. Sun Q. Ge Z. Li R. Synlett 2012; 23: 1031
    • 13f Kumar A. Chimni SS. Tetrahedron 2013; 69: 5197
    • 13g Mao Z. Zhu X. Lin A. Li W. Shi Y. Mao H. Zhu C. Cheng Y. Adv. Synth. Catal. 2013; 355: 2029
    • 13h Guo J.-T. Zhang B.-Q. Luo Y. Guan Z. He Y.-H. Asian J. Org. Chem. 2017; 6: 605
    • 14a Tanimura Y. Yasunaga K. Ishimaru K. Eur. J. Org. Chem. 2013; 6535
    • 14b Zhao H. Meng W. Yang Z. Tian T. Sheng Z. Li H. Song X. Zhang Y. Yang S. Li B. Chin. J. Chem. 2014; 32: 417
    • 14c Kimura J. Reddy UV. S. Kohari Y. Seki C. Mawatari Y. Uwai K. Okuyama Y. Kwon E. Tokiwa M. Takeshita M. Iwasa T. Nakano H. Eur. J. Org. Chem. 2016; 3748
    • 16a Zhang F. Li C. Qi C. Tetrahedron: Asymmetry 2013; 24: 380
    • 16b Bañón-Caballero A. Flores-Ferrándiz J. Guillena G. Nájera C. Molecules 2015; 20: 12901
    • 16c Ogasawara A. Reddy UV. S. Seki C. Okuyama Y. Uwai K. Tokiwa M. Takeshita M. Nakano H. Tetrahedron: Asymmetry 2016; 27: 1062
    • 17a Hernández JG. Juaristi E. Chem. Commun. 2012; 48: 5396

    • See also:
    • 17b Banon-Caballero A. Guillena G. Nájera C. Mini-Rev. Org. Chem. 2014; 11: 118
    • 18a Hernández JG. Avila-Ortiz CG. Juaristi E. In Comprehensive Organic Synthesis . 2nd ed., Vol. 9; Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 287
    • 18b Machuca E. Juaristi E. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges . 1st ed.; Brindaban R. Stolle A. Royal Society of Chemistry; Cambridge: 2015: 81

    • See also:
    • 18c Margetic D. Strukil V. Mechanochemical Organic Synthesis . Elsevier; Oxford: 2016
    • 19a Ávila-Ortiz CG. López-Ortiz M. Vega-Peñaloza A. Regla I. Juaristi E. Asymmetric Catal. 2015; 2: 37

    • See also:
    • 19b Bartok M. Dombi G. Curr. Green Chem. 2014; 1: 191
    • 20a Reyes-Rangel G. Vargas-Caporali J. Juaristi E. Tetrahedron 2016; 72: 379

    • See also:
    • 20b Giacalone F. Gruttadauria M. In Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications . 1st ed., Vol. 2; Dalko PI. Wiley-VCH; Weinheim: 2013: 673
    • 21a Obregón-Zúñiga A. Guerrero-Robles M. Juaristi E. Eur. J. Org. Chem. 2017; 2692
    • 21b Obregón-Zuñiga A. Juaristi E. Tetrahedron 2017; 73: 5373

    • See also:
    • 21c Lindström UM. Chem. Rev. 2002; 102: 2751
    • 21d Mlynarski J. Paradowska J. Chem. Soc. Rev. 2008; 37: 1502
    • 21e Siyutkin DE. Kucherenko AS. Zlotin SG. In Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications . 1st ed., Vol. 2; Dalko PI. Wiley-VCH; Weinheim: 2013: 617
    • 21f Jimeno C. Org. Biomol. Chem. 2016; 14: 6147
    • 22a Bahmanyar S. Houk KN. Martin HJ. List B. J. Am. Chem. Soc. 2003; 125: 2475
    • 22b Allemann C. Gordillo R. Clemente FR. Cheong PH.-Y. Houk KN. Acc. Chem. Res. 2004; 37: 558

      Compare:
    • 23a Juaristi E. Hernández-Rodríguez M. López-Ruiz H. Aviña J. Muñoz-Muñiz O. Helv. Chim. Acta 2002; 85: 1999
    • 23b Hernández-Rodríguez M. Melgar-Fernández R. Juaristi E. J. Phys. Org. Chem. 2005; 18: 792

      See also:
    • 24a Donets PA. Cramer N. J. Am. Chem. Soc. 2013; 135: 11772
    • 24b Seebach D. Isr. J. Chem. 2017; 57: 55 ; and references cited therein
  • 25 Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471
  • 28 Breslow R. Acc. Chem. Res. 1991; 24: 159
    • 29a Seebach D. Lamatsch B. Beck AK. Dobler M. Egli M. Fitzi R. Gautschi M. Herradón B. Hidber PC. Irwin JJ. Locher R. Maestro M. Maetzke T. Mouriño A. Pfammatter E. Plattner DA. Schickli C. Schweiser WB. Seifer P. Stucky G. Petter W. Escalante J. Juaristi E. Quintana D. Miravitlles C. Molins E. Helv. Chim. Acta 1992; 75: 913

    • See also:
    • 29b Juaristi E. León-Romo JL. Reyes A. Escalante J. Tetrahedron: Asymmetry 1999; 10: 2441
    • 30a Kattuboina A. Li G. Tetrahedron Lett. 2008; 49: 1573
    • 30b Han J. Ai T. Li G. Synthesis 2008; 2519
    • 30c Kaur P. Nguyen T. Li G. Eur. J. Org. Chem. 2009; 912
    • 30d Seifert CW. Pindi S. Li G. J. Org. Chem. 2015; 80: 447
    • 30e Qiao S. Pindi S. Spigener PT. Jiang B. Li G. Tetrahedron Lett. 2016; 57: 619
    • 30f An G. Seifert C. Li G. Org. Biomol. Chem. 2015; 13: 1600
    • 30g Zhang H. Yang B. Yang Z. Lu H. Li G. J. Org. Chem. 2016; 81: 7654
    • 30h Qiao S. Wilcox CB. Unruh DK. Jiang B. Li G. J. Org. Chem. 2017; 82: 2992
    • 30i Qiao S. Wu J. Mo J. Spigener PT. Zhao BN. Jiang B. Li G. Synlett 2017; 28: 2483
    • 30j Qiao S. Mo J. Wilcox CB. Jiang B. Li G. Org. Biomol. Chem. 2017; 15: 1718
    • 31a Anaya de Parrodi C. Juaristi E. Quintero L. Clara-Sosa A. Tetrahedron: Asymmetry 1997; 8: 1075
    • 31b Anaya de Parrodi C. Moreno GE. Quintero L. Juaristi E. Tetrahedron: Asymmetry 1998; 9: 2093
    • 31c Mastrazo VM. Santacruz E. Huelgas G. Paz E. Sosa-Rivadeneyra MV. Bernès S. Juaristi E. Quintero L. Anaya de Parrodi C. Tetrahedron: Asymmetry 2006; 17: 1663
  • 32 The supplementary crystallographic data for this paper can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures; see also the Supporting Information. Crystal data for (1R,2R,1R,2′R)-1 (CCDC 1589104): C22H32Cl2N2, orthorhombic, P212121; a = 12.1774(9) Å, b = 13.1283(10) Å, c = 13.9320(9) Å; α = 90°, β = 90°, γ = 90°; V = 2227.3(3) Å3; z = 4, z′ = 1; R 1 = 4.07%.
  • 33 Crystal data for (1S,2S,1S,2′S)-1 (CCDC 1589107): C22H32Cl2N2, orthorhombic, P212121; a = 12.130(2) Å, b = 12.166(2) Å, c = 13.935(3) Å; α = 90°, β = 90°, γ = 90°; V = 2056.4(7) Å3; z = 4, z′ = 1; R 1 = 4.23%.
  • 34 Crystal data for (1R,2R,1R,2′R)-2 (CCDC 1589128): C22H28ClN2OP, tetragonal, P41; a = 9.337(4) Å, b = 9.337 Å, c = 24.805(15) Å; α = 90°, β = 90°, γ = 90°; V = 2162.5(13) Å3; z = 4, z′ = 1; R 1 = 3.5%.
  • 35 Crystal data for (1S,2S,1R,2′R)-3 (CCDC 1589095): C22H28N5OP, orthorhombic, P212121; a = 7.5054(3) Å, b = 8.6800(4) Å, c = 34.1605(5) Å; α = 90°, β = 90°, γ = 90°; V = 2225.45(17) Å3; z = 4, z′ = 1; R 1 = 4.27%.
  • 36 Crystal data for (1R,2R,1S,2′S)-3 (CCDC 1589094): C22H28N5OP, orthorhombic, P212121; a = 7.4759(4) Å, b = 8.6939(4) Å, c = 34.2042(17) Å; α = 90°, β = 90°, γ = 90°; V = 2223.09(19) Å3; z = 4, z′ = 1; R 1 = 5.56%.
  • 37 Crystal data for (1S,2S,1R,2′R)-4 (CCDC 1589105): C22H30N3OP, monoclinic, P21; a = 12.2137(2) Å, b = 7.6245(1) Å, c = 12.6593(3) Å; α = 90°, β = 115.379(1)°, γ = 90°; V = 1065.11(4) Å3; z = 2, z′ = 1; R 1 = 4.26%.
  • 38 Crystal data for (1R,2R,1′S,2′S)-4 (CCDC 1589106): C22H30N3OP, monoclinic, P21; a = 12.2140(2) Å, b = 7.6234(2) Å, c = 12.6533(3) Å; α = 90°, β = 115.355(1)°, γ = 90°; V = 1064.69(4) Å3; z = 2, z′ = 1; R 1 = 3.64%.
  • 39 Jeffrey GA. An Introduction to Hydrogen Bonding . Oxford University Press; UK: 1997: 12
    • 40a Desiraju GR. Kashino S. Coombs MM. Glusker JP. Acta Crystallogr., Sect. B 1993; 49: 880
    • 40b Desiraju GR. Acc. Chem. Res. 1996; 29: 441
    • 41a Kean ES. Fisher K. West R. J. Am. Chem. Soc. 1972; 94: 3246
    • 41b Caillet J. Claverie P. Pullman B. Acta Crystallogr., Sect. B 1976; 32: 2740
    • 41c Bernstein J. Hagler T. J. Am. Chem. Soc. 1978; 100: 673
    • 41d Dauber P. Halger AT. Acc. Chem. Res. 1980; 13: 105
    • 41e Pascal RA. Jr. Wang CM. Wang GC. Koplitz LV. Cryst. Growth Des. 2012; 12: 4367
  • 42 Hong L. Sun W. Yang D. Li G. Wang R. Chem. Rev. 2016; 116: 4006
  • 43 Seebach D. Prelog V. Angew. Chem., Int. Ed. Engl. 1982; 21: 654

    • See, for example:
    • 44a Robak MT. Herbage MA. Ellman JA. Tetrahedron 2011; 67: 4412
    • 44b Wan W. Gao W. Ma G. Ma L. Wang F. Wang J. Jiang H. Zhu S. Hao J. RSC Adv. 2014; 4: 26563
  • 45 Reyes-Rangel G. Vargas-Caporali J. Juaristi E. Tetrahedron 2017; 73: 4707
  • 46 Perrin DD. Armarengo WL. F. Purification of Laboratory Chemicals . Pergamon Press; London: 1988