Synthesis 2018; 50(09): 1862-1866
DOI: 10.1055/s-0036-1591906
paper
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthesis of Azulene

LMU University of Munich, Department of Chemistry, Butenandtstr. 13, 81377 Munich, Germany   Email: Langhals@lrz.uni-muenchen.de
,
Moritz Eberspächer
LMU University of Munich, Department of Chemistry, Butenandtstr. 13, 81377 Munich, Germany   Email: Langhals@lrz.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 23 November 2017

Accepted after revision: 26 December 2017

Publication Date:
30 January 2018 (online)


Abstract.

An improved and scalable synthesis of azulene has been developed by the application of pyrrolidine as a reagent and continuous steam distillation and extraction for workup. Applications for the coloration of perfluorinated media and silicones were demonstrated.

 
  • References

    • 1a Sherndal AE. J. Am. Chem. Soc. 1915; 37: 167
    • 1b Sherndal AE. J. Am. Chem. Soc. 1915; 37: 1537

      Reviews:
    • 2a Tobe Y. Chem. Rec. 2015; 15: 86
    • 2b Saito K. Kawamata J. Ito S. Mirai Zairyo 2008; 8: 32 ; Chem. Abstr. 2008, 150, 514793
    • 2c Gordon M. Chem. Rev. 1952; 50: 127
    • 3a Binsch G. Heilbronner E. Jankow R. Schmidt D. Chem. Phys. Lett. 1967; 1: 135
    • 3b Beer M. Longuet-Higgins HC. J. Chem. Phys. 1955; 23: 1390
  • 4 Langhals H. Eberspächer M. Ger. Offen DE 102012019843.4, 2012 ; Chem. Abstr. 2014, 160, 691028
  • 5 Della Loggia R. Carle R. Sosa S. Tubaro A. Planta Med. 1990; 56: 657
    • 6a Brieger G. J. Chem. Educ. 1992; 69: A262
    • 6b Lemal DM. Goldman GD. J. Chem. Educ. 1988; 65: 923
  • 7 Langhals H. Eberspächer M. Hofer A. J. Chem. Educ. 2015; 92: 1725
  • 8 Kobuch K. Menz DH. Hoerauf H. Dresp JH. Gabel V.-P. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001; 239: 635; DOI: 10.1007/s004170100330
  • 9 Teufel R. Int. J. Toxicol. 1999; 18 (03) 27
    • 10a Copland D. Leaver D. Menzies WB. Tetrahedron Lett. 1977; 639
    • 10b Mukherjee D. Dunn LC. Houk KN. J. Am. Chem. Soc. 1979; 101: 251
    • 10c Gupta YN. Mani SR. Houk KN. Tetrahedron Lett. 1982; 23: 495
  • 11 Treibs W. Kirchhof W. Ziegenbein W. Fortschr. Chem. Forsch. 1955; 3: 334
    • 12a Carret S. Blanc A. Coquerel Y. Berthod M. Greene AE. Deprés J.-P. Angew. Chem. Int. Ed. 2005; 44: 5130
    • 12b Crombie AL. Kane JL. Shea KM. Danheiser RL. J. Org. Chem. 2004; 69: 8652
    • 12c Usui K. Tanoue K. Yamamoto K. Shimizu T. Suemune H. Org. Lett. 2014; 16: 4662
    • 13a Ziegler K. Hafner K. Angew. Chem. 1955; 67: 101
    • 13b Ziegler K. Angew. Chem. 1955; 67: 101
    • 13c Hafner K. Angew. Chem. 1955; 67: 101
    • 13d Rosler H. König W. Naturwissenschaften 1955; 42: 211
  • 14 Hafner K. Meinhardt K.-P. Org. Synth. 1984; 62: 134
  • 15 Hafner K. Justus Liebigs Ann. Chem. 1957; 606: 79
  • 16 Wilson RM. Gardner EJ. Squire RE. J. Chem. Educ. 1973; 50: 94
    • 17a Nolte KD. Daehne S. J. Prakt. Chem. 1976; 318: 643
    • 17b Hünig S. Baron W. Chem. Ber. 1957; 90: 403
  • 18 Hünig S. Kreitmeier P. Märkl G. Sauer J. Arbeitsmethoden in der Organischen Chemie, 1. Auflage . Lehmanns Media; Berlin: 2006: 111-112
    • 19a Wagner BD. Tittelbach-Helmrich D. Steer RP. J. Phys. Chem. 1992; 96: 7904
    • 19b Torii H. Tasumi M. Spectrochim. Acta, Part A 1989; 45: 1173
    • 19c Olszowski A. Ruziewicz Z. Chojnacki H. J. Mol. Struct. 1975; 28: 5
    • 20a Langhals H. Anal. Bioanal. Chem. 2002; 374: 573
    • 20b Langhals H. Spectrochim. Acta, Part A 2000; 56: 2207
  • 21 Tietze L.-F. Eicher T. Diederichsen U. Speicher A. Reactions and Syntheses in the Organic Chemistry Laboratory . 1st ed. Wiley-VCH; Weinheim: 2007: 170