Synlett 2018; 29(08): 1084-1086
DOI: 10.1055/s-0036-1591897
letter
© Georg Thieme Verlag Stuttgart · New York

tert-Butylhydroperoxide-Mediated Oxidation of Carbazole-3-carboxyaldehydes

Ramu Meesala*
a  Department of Pharmaceutical Chemistry, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Email: [email protected]   Malaysia
,
Ahmad Saifuddin Mohamad Arshad
b  Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
,
Mallikarjuna Rao Pichika
a  Department of Pharmaceutical Chemistry, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Email: [email protected]   Malaysia
,
Mohd Nizam Mordi
b  Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
,
Sharif Mahsufi Mansor
b  Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
› Author Affiliations
This work was supported by a Ministry of Science, Technology and ­Innovation grant (06-02-09-SF0041), the International Medical University, Malaysia and Research University (RUI) Grant Scheme (1001/CDADAH/811257), Universiti Sains Malaysia.
Further Information

Publication History

Received: 07 November 2017

Accepted after revision: 26 December 2017

Publication Date:
29 January 2018 (online)


Abstract

Oxidation of carbazole-3-carboxyaldehydes promoted by a 70% aqueous solution of tert-butylhydroperoxide leads to the corresponding carbazole-3-carboxylic acids in good yields. This transition-metal-free oxidation protocol is attractive for the synthesis of pharmaceutically important carbazole analogues.

Supporting Information

 
  • References and Notes

    • 1a Roy J. Jana AK. Mal D. Tetrahedron 2012; 68: 6099
    • 1b Schmidt AW. Reddy KR. Knölker H.-J. Chem. Rev. 2012; 112: 3193
    • 1c Knölker H.-J. Reddy KR. Chem. Rev. 2002; 102: 4303
    • 1d Moody CJ. Synlett 1994; 681
    • 1e Knölker H.-J. Synlett 1992; 371
    • 2a Zheng X. Lv L. Lu S. Wang W. Li Z. Org. Lett. 2014; 16: 5156
    • 2b Gao H. Xu Q.-L. Yousufuddin M. Ess DH. Kurti L. Angew. Chem. Int. Ed. 2014; 53: 2701
    • 2c Wang S. Chai Z. Wei Y. Zhu X. Zhou S. Wang S. Org. Lett. 2014; 16: 3592
    • 2d Takamatsu K. Hirano K. Satoh T. Miura M. Org. Lett. 2014; 16: 2892
    • 2e Zhu C. Ma S. Org. Lett. 2014; 16: 1542
    • 2f Guney T. Lee JJ. Kraus GA. Org. Lett. 2014; 16: 1124
    • 2g Trosien S. Böttger P. Waldvogel SR. Org. Lett. 2014; 16: 402
    • 2h Hernandez-Perez AC. Collins SK. Angew. Chem. Int. Ed. 2013; 52: 12696
    • 2i Kumar VP. Gruner KK. Kataeva O. Knölker H.-J. Angew. Chem. Int. Ed. 2013; 52: 11073
    • 2j Shu D. Winston-McPherson GN. Song W. Tang W. Org. Lett. 2013; 15: 4162
    • 2k Louillat M.-L. Patureau FW. Org. Lett. 2013; 15: 164
    • 3a Qiu Y. Kong W. Fu C. Ma S. Org. Lett. 2012; 14: 6198
    • 3b Antonchick AP. Samanta R. Kulikov K. Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
    • 3c Cho SH. Yoon J. Chang S. J. Am. Chem. Soc. 2011; 133: 5996
    • 3d Wang L. Li G. Liu Y. Org. Lett. 2011; 13: 3786
    • 3e Youn SW. Bihn JH. Kim BS. Org. Lett. 2011; 13: 3738
    • 3f Tsvelikhovsky D. Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14048
    • 3g Rajeshwaran GG. Mohanakrishnan AK. Org. Lett. 2011; 13: 1418
    • 3h Chen C.-C. Chin L.-Y. Yang S.-C. Wu M.-J. Org. Lett. 2010; 12: 5652
    • 3i Jordan-Hore JA. Johansson CC. C. Gulias M. Beck EM. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
    • 3j Tsuchimoto T. Matsubayashi H. Kaneko M. Nagase Y. Miyamura T. Shirakawa E. J. Am. Chem. Soc. 2008; 130: 15823
    • 3k Choi TA. Czerwonka R. Forke R. Jäger A. Knöll J. Krahl MP. Krause T. Reddy KR. Franzblau SG. Knölker H.-J. Med. Chem. Res. 2008; 17: 374
    • 3l Choi TA. Czerwonka R. Fröhner W. Krahl MP. Reddy KR. Franzblau SG. Knölker H.-J. ChemMedChem 2006; 1: 812
    • 4a Wu TS. Huang SC. Wu PL. Teng CM. Phytochemistry 1996; 43: 133
    • 4b Forke R. Jäger A. Knölker H.-J. Org. Biomol. Chem. 2008; 6: 2481
    • 4c Qiu Y. Ma D. Fu C. Ma S. Org. Biomol. Chem. 2013; 11: 1666
    • 4d Knölker H.-J. Wolpert M. Tetra­hedron 2003; 59: 5317
    • 4e Forke R. Krahl MP. Däbritz F. Jäger A. Knölker H.-J. Synlett 2008; 1870
    • 4f Kataeva O. Krahl MP. Knölker H.-J. Org. Biomol. Chem. 2005; 3: 3099
    • 4g Schuster C. Börger C. Julich-Gruner KK. Hesse R. Jäger A. Kaufmann G. Schmidt AW. Knölker H.-J. Eur. J. Org. Chem. 2014; 4741
    • 4h Knölker H.-J. Bauermeister M. J. Chem. Soc., Chem. Commun. 1990; 664
    • 4i Knölker H.-J. Bauermeister M. Tetrahedron 1993; 49: 11221
    • 6a Bowden K. Heilbron IM. Jones ER. H. Weedon BC. L. J. Chem. Soc. 1946; 39
    • 6b Heilbron IM. Jones ER. H. Sondheimer F. J. Chem. Soc. 1949; 604
    • 6c Bladon P. Fabian JM. Henbest HB. Koch HP. Wood GW. J. Chem. Soc. 1951; 2402
    • 6d Curtis RG. Heilbron IM. Jones ER. H. Woods GF. J. Chem. Soc. 1953; 457
    • 6e Bowers A. Halsall TG. Jones ER. H. Lemin AJ. J. Chem. Soc. 1953; 2548
    • 6f Djerassi C. Engle RR. Bowers A. J. Org. Chem. 1956; 21: 1547
  • 7 Cainelli G. Cardillo G. Chromium Oxidations in Organic Chemistry . Springer; Berlin: 1984
    • 8a Webb KS. Ruszkay SJ. Tetrahedron 1998; 54: 401
    • 8b Travis BR. Sivakumar M. Hollist GO. Borhan B. Org. Lett. 2003; 5: 1031
  • 9 Hajimohammadi M. Safari N. Mofakham H. Shaabani A. Tetra­hedron Lett. 2010; 51: 4061
  • 10 Nair V. Varghese V. Paul RR. Jose A. Sinu CR. Menon RS. Org. Lett. 2010; 12: 2653
  • 11 Murray AT. Matton P. Fairhurst NW. G. John MP. Carbery DR. Org. Lett. 2012; 14: 3656
  • 12 Nwaukwa SO. Keehn PM. Tetrahedron Lett. 1982; 23: 3131
    • 13a Yamada T. Rhode O. Takai T. Mukaiyama T. Chem. Lett. 1991; 5
    • 13b Grill JM. Ogle JW. Miller SA. J. Org. Chem. 2006; 71: 9291
    • 14a Wojtowicz H. Brzaszcz M. Kloc K. Mlochowski J. Tetra­hedron 2001; 57: 9743
    • 14b Mlochowski J. Brzaszcz M. Giurg M. Palus J. Wojtowicz H. Eur. J. Org. Chem. 2003; 4329
  • 15 Heaney H. Newbold AJ. Tetrahedron Lett. 2001; 42: 6607
  • 16 Sato K. Takagi J. Aoki M. Noyori R. Tetrahedron Lett. 1998; 39: 7549
    • 17a Bhatia B. Punniyamurthy T. Iqbal J. J. Org. Chem. 1993; 58: 5518
    • 17b Kharata AN. Pendleton P. Badalyan A. Abedini M. Amini MM. J. Mol. Catal. A: Chem. 2001; 175: 277
  • 18 Lim M. Yoon C.-M. An G. Rhee H. Tetrahedron Lett. 2007; 48: 3835
    • 19a Jiang N. Ragauskas AJ. J. Org. Chem. 2007; 72: 7030
    • 19b Gopinath R. Patel BK. Org. Lett. 2000; 2: 577
  • 20 Rozner DS. Neimann K. Neumann R. J. Mol. Catal. A: Chem. 2007; 262: 109
  • 21 Biella S. Prati L. Rossi M. J. Mol. Catal. A: Chem. 2003; 197: 207
  • 22 Mannam S. Sekar G. Tetrahedron Lett. 2008; 49: 1083
  • 23 Chakraborty D. Gowda RR. Malik P. Tetrahedron Lett. 2009; 50: 6553
  • 24 Malik P. Chakraborty D. Tetrahedron Lett. 2010; 51: 3521
    • 25a Rennison D. Gueret SM. Laita O. Bland RJ. Sutherland IA. Boddy IK. Brimble MA. Aust. J. Chem. 2016; 69: 1268
    • 25b Chen P.-Z. Weng Y.-X. Niu L.-Y. Chen Y.-Z. Wu L.-Z. Tung CH. Yang Q.-Z. Angew. Chem. Int. Ed. 2016; 55: 2759
    • 26a Krahl MP. Jäger A. Krause T. Knölker H.-J. Org. Biomol. Chem. 2006; 4: 3215
    • 26b Forke R. Krahl MP. Krause T. Schlechtingen G. Knölker H.-J. Synlett 2007; 268
    • 27a Zhang J. Wang Z. Wang Y. Wan C. Zheng X. Wang Z. Green Chem. 2009; 11: 1973
    • 27b Wu X.-F. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 12: 5807
  • 28 Representative procedure: To a mixture of 9-ethylcarbazole-3-carboxyaldehyde (1 mmol) in DMSO (4 mL) at room temperature, aq. 70% TBHP (6.0 equiv) was added and the mixture was stirred at 100 °C for 12 h. After completion of reaction (TLC monitoring), the mixture was treated with water (15 mL) and extracted with ethyl acetate (2 × 20 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography to afford pure 9-ethylcarbazole-3-carboxylic acid. Yield: 65%; white solid; mp 222–224 °C; IR (KBr): 3458, 2925, 1678, 1597, 1469, 1382, 1230, 724 cm–1; 1H NMR (500 MHz, DMSO-d 6): δ = 12.56 (br. s, 1 H), 8.80 (d, J = 1.5 Hz, 1 H), 8.28 (d, J = 7.7 Hz, 1 H), 8.07 (dd, J = 8.6, 1.6 Hz, 1 H), 7.69–7.66 (m, 2 H), 7.52 (t, J = 8.2 Hz, 1 H), 7.27 (t, J = 7.8 Hz, 1 H), 4.49 (q, J = 7.1 Hz, 2 H), 1.34 (t, J = 7.2 Hz, 3 H); 13C NMR (125 MHz, DMSO-d 6): δ = 168.5, 142.5, 140.7, 127.5, 126.9, 123.0, 122.7, 122.4, 121.6, 121.2, 120.1, 110.0, 109.2, 37.7, 14.1; MS: m/z 238 [M – H+]. Anal. Calcd. C15H13NO2: C, 75.30; H, 5.48; N, 5.85. Found: C, 75.23; H, 5.54; N, 5.78.