Synlett 2018; 29(07): 938-942
DOI: 10.1055/s-0036-1591894
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of 1-Thiomansonones with Anti-MRSA Activity

Seong-Hyuk Park
a   College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, South Korea   Email: dyshin@gachon.ac.kr
,
Sooyoung Park
a   College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, South Korea   Email: dyshin@gachon.ac.kr
,
Chang-Yong Lee
a   College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, South Korea   Email: dyshin@gachon.ac.kr
,
Young-Ger Suh
b   College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, Korea
,
Dongyun Shin*
a   College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, South Korea   Email: dyshin@gachon.ac.kr
› Author Affiliations
This work was supported by the National Research Foundation of ­Korea (NRF-2015R1D1A1A01056620 and NRF-2014M3C1A3054139) and partly the Korea Health Technology R&D Project through the ­Korea Health Industry Development Institute (KHIDI), Ministry of Health and Welfare (grant No. HI14C1135).
Further Information

Publication History

Received: 06 November 2017

Accepted after revision: 12 December 2017

Publication Date:
29 January 2018 (online)


S.-H. Park and S. Park contributed equally to this work.

Abstract

In this study, we developed an efficient and general synthetic strategy for thiaphenalene, a sulfur-containing polyaromatic hetero­cycle, and applied for the synthesis of 1-thio derivatives of mansonone I and F, natural 1-oxaphenalenic orthoquinones. The pivotal steps for the construction of thiophenalene skeleton include formation of arylsulfide by Newman–Kwart rearrangement of thiocarbamate or palladium-­catalyzed cross-coupling, and pericyclic ring closure. Three bioisosterically modified orthoquinones were synthesized and were evaluated for anti-MRSA activity.

Supporting Information

 
  • References and Notes

  • 1 Holland TL. Arnold C. Fowler VG. Jr. JAMA 2014; 312: 1330
  • 2 Ippolito G. Leone S. Lauria FN. Nicastri E. Wenzel RP. Int. J. Infect. Dis. 2010; 14: S7; Suppl. 4
  • 3 Mohammad H. Mayhoub AS. Ghafoor A. Soofi M. Alajlouni RA. Cushman M. Seleem MN. J. Med. Chem. 2014; 57: 1609
  • 4 Koh J.-J. Lin S. Aung TT. Lim F. Zou H. Bai Y. Li J. Lin H. Pang LM. Koh WL. Salleh SM. Lakshminarayanan R. Zhou L. Qiu S. Pervushin K. Verma C. Tan DT. H. Cao D. Liu S. Beuerman RW. J. Med. Chem. 2014; 58: 739
  • 5 Pasberg-Gauhl C. Drug Discovery Today: Technol. 2014; 11: 109
  • 6 Shin D. Kim H.-S. Min K.-H. Hyun S.-S. Kim S.-A. Huh H. Choi E.-C. Choi YH. Kim J. Choi S.-H. Kim W.-B. Suh Y.-G. Chem. Pharm. Bull. 2000; 48: 1805
  • 7 Suh Y.-G. Shin D. Min K.-H. Hyun S.-S. Jung J.-K. Seo S.-Y. Chem. Commun. 2000; 1203
  • 8 Banerjee AK. Laya MS. Poon PS. In Studies in Natural Products Chemistry . Atta-ur-Rahmann Elsevier; Amsterdam: 2006. Part M, Vol. 33 193
  • 9 Kim J.-P. Kim W.-G. Koshino H. Jung J. Yoo I.-D. Phytochemistry 1996; 43: 425
  • 10 Overeem JC. Elgersma DM. Phytochemistry 1970; 9: 1949
  • 11 Bettòlo GB. M. Casinovi CG. Galeffi C. Tetrahedron Lett. 1965; 6: 4857
  • 12 Rubinstein E. Keynan Y. Front. Public Health 2014; 2: 217
  • 13 Suh YG. Kim SN. Shin D. Hyun SS. Lee DS. Min KH. Han SM. Li F. Choi EC. Choi SH. Bioorg. Med. Chem. Lett. 2006; 16: 142
  • 14 Shin D. Kim SN. Chae J.-H. Hyun S.-S. Seo S.-Y. Lee Y.-S. Lee K.-O. Kim S.-H. Lee Y.-S. Jeong JM. Choi N.-S. Suh Y.-G. Bioorg. Med. Chem. Lett. 2004; 14: 4519
  • 15 Sasaki S. Kitamura S. Negoro N. Suzuki M. Tsujihata Y. Suzuki N. Santou T. Kanzaki N. Harada M. Tanaka Y. Kobayashi M. Tada N. Funami M. Tanaka T. Yamamoto Y. Fukatsu K. Yasuma T. Momose Y. J. Med. Chem. 2011; 54: 1365
  • 16 Patani GA. LaVoie EJ. Chem. Rev. 1996; 96: 3147
  • 17 Lima LM. Barreiro EJ. Curr. Med. Chem. 2005; 12: 23
  • 18 Zonta C. De Lucchi O. Volpicelli R. Cotarca L. Top. Curr. Chem. 2007; 275: 131
  • 19 Zheng N. McWilliams JC. Fleitz FJ. Armstrong JD. Volante RP. J. Org. Chem. 1998; 63: 9606
  • 20 Giubellino A. Shi Z.-D. Jenkins LM. Worthy KM. Bindu LK. Athauda GB. Peruzzi R. Fisher J. Appella E. Burke TR. Bottaro DP. J. Med. Chem. 2008; 51: 7459
  • 21 Molander GA. Yun C.-S. Tetrahedron 2002; 58: 1465
  • 22 Sharifi A. Abaee MS. Mirzaei M. Naimi-Jamal MR. Asian J. Chem. 2010; 22: 6519
  • 23 Procedure for Newman–Kwart Rearrangement: S-(2,5-Dimethylnaphthalen-1-yl)dimethylcarbamothioate (12) A solution of O-(2,5-dimethylnaphthalen-1-yl)dimethylcarbamothioate (11, 300 mg, 1.15 mmol) in N,N-diethylaniline (10 mL) was equipped with sure-sealed round-bottom flask. And the solution was stirred for 12 h at 240 °C. After cooling, the solution was quenched with 10% HCl and diluted with EtOAc. The organic layer was washed with H 2 O and brine and dried with MgSO4. The filtered solution was concentrated, and the residue was purified with SiO 2 column chromatography (EtOAc/hexane = 1:10) to obtain the desired product as a ­yellowish oil (214 mg, 71%). 1H NMR (600 MHz, CDCl 3 ): δ =8.30 (d, J = 9.0 Hz, 1 H), 8.01 (d, J = 9.0 Hz, 1 H), 7.47 (d, J = 8.4 Hz, 1 H), 7.40 (t, J = 7.2 Hz, 1 H), 7.26 (d, J = 7.2 Hz, 1 H), 3.27 (s, 3 H), 3.01 (s, 3 H), 2.68 (s, 3 H), 2.64 (s, 3 H) ppm. 13C NMR (150 MHz, CDCl 3 ): δ = 165.9, 142.6, 136.1, 134.6, 131.8, 128.4, 126.7, 126.3, 126.1, 124.9, 124.0, 22.5, 19.6 ppm. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H18NOS: 260.1104; found: 260.1103.
  • 24 Synthesis of Ethyl 2-[(2,5-dimethylnaphthalen-1-yl)thio]acetate (15) To a solution of 2,5-dimethylnaphthalen-1-yl trifluoromethanesulfonate (14, 283 mg, 0.930 mmol) in degassed toluene was added Pd2(dba)3 (85 mg, 0.093 mmol), 1,1′-bis(diphenylphosphino)ferrocene (57 mg, 0.102 mmol), NaOt-Bu (156 mg, 1.39 mmol), and then ethyl thioglycolate (97 μL, 1.39 mmol) was added. And the reaction mixture was refluxed for 1 day. And then the reaction solvent was evaporated. The residue was purified with SiO2 column chromatography with EtOAc/hexane (20:1) to obtain the desired product as a colorless oil (104 mg, 43%). 1 H NMR (600 MHz, CDCl3): δ = 8.53 (d, J = 8.4 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 1 H), 7.46 (t, J = 7.2 Hz, 1 H), 7.43 (d, J = 9.0 Hz, 1 H), 7.30 (d, J = 7.2 Hz, 1 H), 3.97 (q, J = 7.2 Hz, 2 H) 3.44 (s, 2 H), 2.78 (s, 3 H), 2.69 (s, 3 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 169.9, 141.9, 135.4, 134.8, 132.0, 129.1, 128.4, 126.7, 126.2, 125.7, 124.4, 61.2, 37.5, 22.3, 19.6, 13.9 ppm. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H17O2S: 261.0944; found: 261.0942.
  • 25 Zimmer H. Lankin DC. Horgan SW. Chem. Rev. 1971; 71: 229