Synlett 2018; 29(10): 1293-1296
DOI: 10.1055/s-0036-1591889
letter
© Georg Thieme Verlag Stuttgart · New York

Lipase-Induced Oxidative Furan Rearrangements

Fabian Blume
a  Department of Chemistry & Materials Science, Aalto-yliopisto, Kemistintie 1, 02150 Espoo, Finland   Email: jan.deska@aalto.fi
,
Petra Sprengart
b  Department of Chemistry, Universität zu Köln, Greinstrasse 4, 50939 Cologne, Germany
,
a  Department of Chemistry & Materials Science, Aalto-yliopisto, Kemistintie 1, 02150 Espoo, Finland   Email: jan.deska@aalto.fi
› Author Affiliations
We gratefully acknowledge support by the Suomen Akatemia (298250), the Deutsche Forschungsgemeinschaft (DE1599/4-1) and by Carbolution Chemicals.
Further Information

Publication History

Received: 30 October 2017

Accepted: 17 December 2017

Publication Date:
15 January 2018 (eFirst)

Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop

Abstract

Lipase B from Candida antarctica catalyzes the oxidative ring expansion of furfuryl alcohols using aqueous hydrogen peroxide to yield functionalized pyranones under mild conditions. The method further allows for the preparation of corresponding piperidinone derivatives by enzymatic rearrangement of N-protected furfurylamines.

Supporting Information

 
  • References and Notes

  • 1 Kamm B. Angew. Chem. Int. Ed. 2007; 46: 5056 ; Angew. Chem. 2007, 119, 5146
  • 3 Cavill GW. K. Laing DG. Williams PJ. Aust. J. Chem. 1969; 22: 2145
  • 4 Achmatowicz OJr. Bukowski P. Szechner B. Zwierzchowska Z. Zamojski A. Tetrahedron 1971; 27: 1973
  • 5 Lefebvre Y. Tetrahedron Lett. 1972; 2: 133
  • 6 Deska J. Thiel D. Gianolio E. Synthesis 2015; 47: 3435
    • 7a Ghosh AK. Brindisi M. RSC Adv. 2016; 6: 111564
    • 7b van der Pijl F. van Delft FL. Rutjes FP. J. T. Eur. J. Org. Chem. 2015; 4811
  • 8 Thiel D. Doknić D. Deska J. Nat. Commun. 2014; 5: 5278
  • 9 Blume F. Liu Y.-C. Thiel D. Deska J. J. Mol. Catal. B: Enzym. 2016; 134: 280
  • 10 Fernández-Fuego E. Younes SH. H. van Rootselaar S. Aben RW. M. Renirie R. Wever R. Holtmann D. Rutjes FP. J. Hollmann F. ACS Catal. 2016; 6: 5904
  • 11 Asta C. Schmidt D. Conrad J. Förster-Frömme B. Tolasch T. Beifuss U. RSC Adv. 2013; 3: 19259
  • 12 Bernhardt P. Hult K. Kazlauskas RJ. Angew. Chem. Int. Ed. 2005; 44: 2742 ; Angew. Chem. 2005, 117, 2802
    • 13a Kotlewska AJ. van Rantwijk F. Sheldon RA. Arends IW. C. E. Green Chem. 2011; 13: 2154
    • 13b Ankudey EG. Olivo HF. Peeples TL. Green Chem. 2006; 8: 923
    • 13c Carboni-Oerlemans C. Domínguez de María P. Tuin B. Bargeman G. van der Meer A. van Gemert R. J. Biotechnol. 2006; 126: 140
    • 13d Rüsch M. Warwel S. Org. Lett. 1999; 1: 1025
    • 14a Flourat AL. Peru AA. M. Teixeira AR. S. Brunissen F. Allais F. Green Chem. 2015; 17: 404
    • 14b Wang X.-P. Zhou P.-F. Li Z.-G. Yang B. Hollmann F. Wang Y.-H. Sci Rep. 2017; 7: 44599
    • 14c Ríos MY. Salazar E. Olivo HF. Green Chem. 2007; 9: 459
    • 15a Wang Z. Chen X. Wang C. Zhang L. Li F. Zhang W. Chen P. Wang L. Green Chem. Lett. Rev. 2017; 10: 269
    • 15b Bergler Bitencourt T. da Graça Nascimento M. Green Chem. 2009; 11: 209
  • 16 Representative Experimental Procedure The appropriate furfuryl alcohol (5 mmol) was dissolved in EtOAc (50 mL), and CAL-B (105 mg, 1.5 kU) and aq. H2O2 (50 % 858 μL, 15 mmol) were added. The reaction mixture was placed on an orbital shaker at 40 °C (200 rpm). After 24 h, phosphate buffer (15 mL, 100 mM, pH 7.0) and catalase (5 μL) were added, and the mixture was shaken for further 15 min. The organic phase was separated, and the aqueous phase was extracted with EtOAc (2 × 20 mL). The combined organic layers were dried over Na2SO4 and volatiles were removed under reduced pressure. The crude product was purified by flash column chromatography (hexane/EtOAc). 6-Hydroxy-2,2-dimethyl-2H-pyran-3(6H)-one (2h) Purified by column chromatography (SiO2, n-hexane/EtOAc 3:1 to 2:1) to give a colorless liquid (547 mg, 3.85 mmol, 77%). Rf = 0.33 (n-hexane/EtOAc, 2:1). 1H NMR (400 MHz, CDCl3): δ = 6.87 (dd, 3 J = 10.3 Hz, 3 J = 2.2 Hz, 1 H), 6.07 (dd, 3 J = 10.3 Hz, 4 J = 1.3 Hz, 1 H), 5.70–5.68 (m, 1 H), 3.38 (br s, 1 H), 1.49 (s, 3 H), 1.39 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 198.9, 145.7, 126.6, 88.0, 79.5, 26.6, 23.9 ppm. FT-IR (ATR): ν = 3402 (br), 2982 (w), 1681 (s), 1380 (m), 1293 (m), 1238 (m), 1084 (m), 1036 (s), 924 (m) cm–1.
  • 17 Blume F. Albeiruty MH. Deska J. Synthesis 2015; 47: 2093
    • 18a Hodgson R. Kennedy A. Nelson A. Perry A. Synlett 2007; 1043
    • 18b Ferrari FD. Ledgard AJ. Marquez R. Tetrahedron 2011; 67: 4988
    • 18c Haukaas MH. O’Doherty GA. Org. Lett. 2001; 3: 401
  • 19 Wang H.-Y. Yang K. Bennett SR. Guo S.-R. Tang W. Angew. Chem. Int. Ed. 2015; 54: 8756 ; Angew. Chem. 2015, 127, 8880
    • 20a Yu Y.-M. Yang J.-S. Peng C.-Z. Caer V. Cong P.-Z. Zou Z.-M. Lu Y. Yang S.-H. Gu Y.-C. J. Nat. Prod. 2009; 72: 921
    • 20b Chen Y. Tao Y. Lian X. Wang L. Zhao Y. Jiang J. Zhang Y. Food Chem. 2010; 122: 1173