Synthesis 2018; 50(07): 1471-1481
DOI: 10.1055/s-0036-1591882
paper
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthetic Approach to Saccharin Derivatives ­Containing a Sulfonylamidine Scaffold

a   Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden   Email: yantao.chen@astrazeneca.com
,
Carl-Johan Aurell*
b   Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden   Email: carl-johan.aurell@astrazeneca.com
,
Pernilla Korsgren*
c   Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden   Email: pernilla.korsgren@astrazeneca.com
,
Johanna Malm
c   Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden   Email: pernilla.korsgren@astrazeneca.com
,
Malin Härslätt
c   Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden   Email: pernilla.korsgren@astrazeneca.com
,
Maria Fridén-Saxin
d   Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
,
Anna Pettersen
c   Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden   Email: pernilla.korsgren@astrazeneca.com
› Author Affiliations
Further Information

Publication History

Received: 10 November 2017

Accepted after revision: 04 December 2017

Publication Date:
11 January 2018 (online)


Abstract

A key intermediate was obtained as solid through filtration of the reaction mixture of saccharin, chloro(triphenyl)phosphonium chloride, and N,N-diisopropylethylamine (DIPEA) in chloroform. The soluble triphenylphosphine oxide went to filtrate as waste, while the solid was reacted with amines to afford N-sulfonylamidines. In total, 26 N-sulfonylamidine products were obtained in moderate to good overall yields.

Supporting Information

 
  • References

    • 1a Greenhill JV. Lue P. Prog. Med. Chem. 1993; 30: 203
    • 1b Maccallini C. Fantacuzzi M. Amoroso R. Mini-Rev. Med. Chem. 2013; 13: 1305
    • 2a Ishikawa T. Kumamoto T. Amidines in Organic Synthesis . Wiley; New York: 2009: 49-91
    • 2b Taylor JE. Bull SD. Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
  • 3 Schwenker G. Bosl K. Arch. Pharm. (Weinheim) 1970; 303: 980
  • 4 Larsen JD. Bundgaard H. Int. J. Pharm. 1987; 37: 87
  • 5 Procopiou PA. Barrett JW. Barton NP. Begg M. Clapham D. Copley RC. B. Ford AJ. Graves RH. Hall DA. Hancock AP. Hill AP. Hobbs H. Hodgson ST. Jumeaux C. Lacroix YM. L. Miah AH. Morriss KM. L. Needham D. Sheriff EB. Slack RJ. Smith CE. Sollis SL. Staton H. J. Med. Chem. 2013; 56: 1946
  • 6 Murugesan N. Gu Z. Spergel S. Young M. Chen P. Mathur A. Leith L. Hermsmeier M. Liu EC. K. Zhang R. Bird E. Waldron T. Marino A. Koplowitz B. Humphreys WG. Chong S. Morrison RA. Webb ML. Moreland S. Trippodo N. Barrish JC. J. Med. Chem. 2003; 46: 125
    • 7a Wang M.-J. Liu Y.-Q. Chang L.-C. Wang C.-Y. Zhao Y.-L. Zhao X.-B. Qian K. Nan X. Yang L. Yang X.-M. Hung H.-Y. Yang J.-S. Kuo D.-H. Goto M. Morris-Natschke SL. Pan S.-L. Teng C.-M. Kuo S.-C. Wu T.-S. Wu Y.-C. Lee K.-H. J. Med. Chem. 2014; 57: 6008
    • 7b Song Z.-L. Chen H.-L. Wang Y.-H. Goto M. Gao W.-J. Cheng P.-L. Morris-Natschke SL. Liu Y.-Q. Zhu G.-X. Wang M.-J. Lee K.-H. Bioorg. Med. Chem. Lett. 2015; 25: 2690
    • 7c Beretta GL. Zaffaroni N. Varchi G. Expert Opin. Ther. Pat. 2016; 26: 637
    • 7d Song Z.-L. Wang M.-J. Li L. Wu D. Wang Y.-H. Yan L.-T. Morris-Natschke SL. Liu Y.-Q. Zhao Y.-L. Wang C.-Y. Liu H. Goto M. Liu H. Zhu G.-X. Lee K.-H. Eur. J. Med. Chem. 2016; 115: 109
  • 8 Yang L. Zhao Y.-L. Zhao C.-Y. Li H.-H. Wang M.-J. Morris-Natschke SL. Qian K. Lee K.-H. Liu Y.-Q. Med. Chem. Res. 2014; 23: 5043
  • 9 Lee MY. Kim MH. Kim J. Kim SH. Kim BT. Jeong IH. Chang S. Kim SH. Chang S.-Y. Bioorg. Med. Chem. Lett. 2010; 20: 541
  • 10 Mandal S. Rajput VK. Sundin AP. Leffler H. Mukhopadhyay B. Nilsson UJ. Can. J. Chem. 2016; 94: 936
    • 11a Booker-Milburn KI. Guly DJ. Cox B. Procopiou PA. Org. Lett. 2003; 5: 3313
    • 11b Bae I. Han H. Chang S. J. Am. Chem. Soc. 2005; 127: 2038
    • 11c Mandal S. Gauniyal HM. Pramanik K. Mukhopadhyay B. J. Org. Chem. 2007; 72: 9753
    • 11d Yao M. Lu C.-D. Org. Lett. 2011; 13: 2782
    • 11e Kong Y. Yu L. Cui Y. Cao J. Synthesis 2014; 46: 183
    • 11f Murugavel G. Punniyamurthy T. J. Org. Chem. 2015; 80: 6291
    • 11g Mulati A. Wusiman A. Heterocycles 2015; 91: 2163
    • 11h Kim J. Stahl SS. J. Org. Chem. 2015; 80: 2448
    • 11i Yavari I. Sheikhi A. Nematpour M. Taheri Z. Synth. Commun. 2015; 45: 1089
    • 11j Ghasemi Z. Shojaei S. Shahrisa A. RSC Adv. 2016; 6: 56213
    • 11k Kim MJ. Kim BR. Lee CY. Kim J. Tetrahedron Lett. 2016; 57: 4070
    • 11l Suja TD. Divya KV. L. Naik LV. Ravi Kumar A. Kamal A. Bioorg. Med. Chem. Lett. 2016; 26: 2072
    • 11m Feng Y. Zhou W. Sun G. Liao P. Bi X. Li X. Synthesis 2017; 49: 1371
    • 11n Chow SY. Odell LR. J. Org. Chem. 2017; 82: 2515
  • 12 Toure BB. Miller-Moslin K. Yusuff N. Perez L. Dore M. Joud C. Michael W. DiPietro L. van der Plas S. McEwan M. Lenoir F. Hoe M. Karki R. Springer C. Sullivan J. Levine K. Fiorilla C. Xie X. Kulathila R. Herlihy K. Porter D. Visser M. ACS Med. Chem. Lett. 2013; 4: 186
  • 13 Chen Y. Aurell C.-J. Pettersen A. Lewis RJ. Hayes MA. Lepistö M. Jonson AC. Leek H. Thunberg L. ACS Med. Chem. Lett. 2017; 8: 672
  • 14 CCDC 1522311 (7) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 Lukin K. Kishore V. Gordon T. Org. Process Res. Dev. 2013; 17: 666
  • 16 Batesky DC. Goldfogel MJ. Weix DJ. J. Org. Chem. 2017; 82: 9931
  • 17 Ghosh N. Synlett 2004; 574
  • 18 Shieh W.-C. Dell S. Repič O. J. Org. Chem. 2002; 67: 2188
  • 19 Page PC. B. Vahedi H. Bethell D. Barkley JV. Synth. Commun. 2003; 33: 1937