Synlett 2018; 29(10): 1281-1288
DOI: 10.1055/s-0036-1591868
synpacts
© Georg Thieme Verlag Stuttgart · New York

Mechanochemical Organic Synthesis: The Art of Making Chemistry Green

Vjekoslav Štrukil*
Division of Organic Chemistry and Biochemistry, Ruđer Boško­vić Institute, Bijenička cesta 54, 10000 Zagreb, Croatia   Email: vstrukil@irb.hr
› Author Affiliations
Financial support from the NSERC Discovery Grant Program, the FRQNT Nouveaux Chercheurs fund, and the Croatian Science Foundation (grant no. 9310) is gratefully acknowledged.
Further Information

Publication History

Received: 23 October 2017

Accepted after revision: 23 November 2017

Publication Date:
02 January 2018 (eFirst)

Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop

Abstract

Despite growing interest in mechanochemistry, its application in the organic-synthesis laboratory has still not reached the level of being commonplace. Inspired by this apparent underrepresentation of mechanochemical practice in the broad organic-chemistry community, this article aims to highlight some of the most interesting aspects of modern mechanosynthesis, with particular emphasis on the potential of mechanochemistry to allow reaction discovery and the development of novel synthetic approaches.

 
  • References

    • 1a Microwave Assisted Organic Synthesis . Tierney JP. Lidström P. Blackwell; Oxford: 2005
    • 1b Winkel A. Reddy PV. G. Wilhelm R. Synthesis 2008; 999
    • 1c Machida H. Takesue M. Smith Jr RL. J. Supercrit. Fluids 2011; 60: 2
    • 1d Simon M.-O. Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 1e Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2015; 11: 1194
    • 2a Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
    • 2b Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
    • 2c Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2d Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 3a Nasir Baig RB. Varma RS. Chem. Soc. Rev. 2012; 41: 1559
    • 3b Achar TK. Bose A. Mal P. Beilstein J. Org. Chem. 2017; 13: 1907
    • 4a Baláž P. Achimovičová M. Baláž M. Billik P. Cherkezova-Zheleva Z. Criado JM. Delogu F. Dutková E. Gaffet E. Gotor FJ. Kumar R. Mitov I. Rojac T. Senna M. Streletskii A. Wieczorek-Ciurowa K. Chem. Soc. Rev. 2013; 42: 7571
    • 4b Šepelák V. Düvel A. Wilkening M. Becker K.-D. Heitjans P. Chem. Soc. Rev. 2013; 42: 7507
    • 5a James SL. Adams CJ. Bolm C. Braga D. Collier P. Friščić T. Grepioni F. Harris KD. M. Hyett G. Jones W. Krebs A. Mack J. Maini L. Orpen AG. Parkin IP. Shearouse WC. Steed JW. Waddell DC. Chem. Soc. Rev. 2012; 41: 413
    • 5b Mottillo C. Friščić T. Molecules 2017; 22: 144
    • 5c Do J.-L. Friščić T. ACS Cent. Sci. 2017; 3: 13
    • 5d Friščić T. Chem. Soc. Rev. 2012; 41: 3493
    • 5e Delori A. Friščić T. Jones W. CrystEngComm 2012; 14: 2350
    • 5f Gečiauskaite AA. García F. Beilstein J. Org. Chem. 2017; 13: 2068
    • 5g Zhu S.-E. Li F. Wang G.-W. Chem. Soc. Rev. 2013; 42: 7535
    • 5h Margetić D. Štrukil V. Mechanochemical Organic Synthesis 2016
    • 5i Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Ranu B. Stolle A. Royal Society of Chemistry; Cambridge: 2015
  • 6 Takacs L. Chem. Soc. Rev. 2013; 42: 7649
  • 7 Friščić T. Childs SL. Rizvi SA. A. Jones W. CrystEngComm 2009; 11: 418
    • 8a Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
    • 8b Hernández JG. Bolm C. J. Org. Chem. 2017; 82: 4007
    • 8c Stolle A. Szuppa T. Leonhardt SE. S. Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
    • 9a Shi YX. Xu K. Clegg JK. Ganguly R. Hirao H. Friščić T. García F. Angew. Chem. Int. Ed. 2016; 55: 12736
    • 9b Su Y.-T. Wang G.-W. Org. Lett. 2013; 15: 3408
  • 10 Tan D. Štrukil V. Mottillo C. Friščić T. Chem. Commun. 2014; 50: 5248
  • 11 Tan D. Mottillo C. Katsenis AD. Štrukil V. Friščić T. Angew. Chem. Int. Ed. 2014; 53: 9321
    • 12a Štrukil V. Igrc MD. Fábián L. Eckert-Maksić M. Childs SL. Reid DG. Duer MJ. Halasz I. Mottillo C. Friščić T. Green Chem. 2012; 14: 2462
    • 12b Štrukil V. Igrc MD. Eckert-Maksić M. Friščić T. Chem. Eur. J. 2012; 18: 8464
    • 12c Štrukil V. Margetić D. Igrc MD. Eckert-Maksić M. Friščić T. Chem. Commun. 2012; 48: 9705
    • 12d Štrukil V. Beilstein J. Org. Chem. 2017; 13: 1828
  • 13 Singh A. Synlett 2010; 2045
  • 14 Štrukil V. Gracin D. Magdysyuk OV. Dinnebier RE. Friščić T. Angew. Chem. Int. Ed. 2015; 54: 8440
    • 15a Katritzky AR. Ledoux S. Witek RM. Nair SK. J. Org. Chem. 2004; 69: 2976
    • 15b Katritzky AR. Witek RM. Rodriguez-Garcia V. Mohapatra PP. Rogers JW. Cusido J. Abdel-Fattah AA. A. Steel PJ. J. Org. Chem. 2005; 70: 7866
    • 16a Rightmire NR. Hanusa TP. Rheingold AL. Organometallics 2014; 33: 5952
    • 16b Journey SN. Teppang KL. Garcia CA. Brim SA. Onofrei D. Addison JB. Holland GP. Purse BW. Chem. Sci. 2017; 8: 7737
  • 17 Đud M. Magdysyuk OV. Margetić D. Štrukil V. Green Chem. 2016; 18: 2666
  • 18 Stojaković J. Farris BS. MacGillivray LR. Chem. Commun. 2012; 48: 7958
  • 19 Štrukil V. Sajko I. Chem. Commun. 2017; 53: 9101

    • Solvent-free photocatalysis in thin liquid films was recently reported, see:
    • 20a Obst M. Shaikh RS. König B. React. Chem. Eng. 2017; 2: 472
    • 20b Obst M. König B. Beilstein J. Org. Chem. 2016; 12: 2358
  • 21 Following our publication (ref. 19), LED strips were recently used in combination with poly(methyl methacrylate) (PMMA) grinding jars, which are less transparent to visible light, for photochemical borylation under milling conditions, see: Hernández JG. Beilstein J. Org. Chem. 2017; 13: 1463
  • 22 Liu X. Cong T. Liu P. Sun P. J. Org. Chem. 2016; 81: 7256
  • 23 Friščić T. Reid DG. Halasz I. Stein RS. Dinnebier RE. Duer MJ. Angew. Chem. Int. Ed. 2010; 49: 712
  • 24 Hasa D. Schneider Rauber G. Voinovich D. Jones W. Angew. Chem. Int. Ed. 2015; 54: 7371
  • 25 Cinčić D. Brekalo I. Kaitner B. Cryst. Growth Des. 2012; 12: 44
    • 26a Friščić T. Halasz I. Beldon PJ. Belenguer AM. Adams F. Kimber SA. J. Honkimäki V. Dinnebier RE. Nat. Chem. 2013; 5: 66
    • 26b Halasz I. Puškarić A. Kimber SA. J. Beldon PJ. Belenguer AM. Adams F. Honkimäki V. Dinnebier RE. Patel B. Jones W. Štrukil V. Friščić T. Angew. Chem. Int. Ed. 2013; 52: 11538
    • 26c Katsenis AD. Puškarić A. Štrukil V. Mottillo C. Julien PA. Užarević K. Pham M.-H. Do T.-O. Kimber SA. J. Lazić P. Magdysyuk O. Dinnebier RE. Halasz I. Friščić T. Nat. Commun. 2015; 6; 6662
    • 26d Gracin D. Štrukil V. Friščić T. Halasz I. Užarević K. Angew. Chem. Int. Ed. 2014; 53: 6193
    • 26e Batzdorf L. Fischer F. Wilke M. Wenzel K.-J. Emmerling F. Angew. Chem. Int. Ed. 2015; 54: 1799
    • 26f Julien PA. Malvestiti I. Friščić T. Beilstein J. Org. Chem. 2017; 13: 2160
    • 26g Haferkamp S. Fischer F. Kraus W. Emmerling F. Beilstein J. Org. Chem. 2017; 13: 2010