Synthesis 2018; 50(09): 1849-1856
DOI: 10.1055/s-0036-1591861
paper
© Georg Thieme Verlag Stuttgart · New York

Continuous-Flow Reductive Alkylation: Synthesis of Bio-based Symmetrical and Disymmetrical Ethers

Sophie Bruniaux
a  Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, 60203 Compiègne cedex, France   eMail: christophe.len@utc.fr
,
Denis Luart
b  Ecole Supérieure de Chimie Organique et Minérale, EA 4297 TIMR, Compiègne, France
,
a  Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, 60203 Compiègne cedex, France   eMail: christophe.len@utc.fr
c  PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
› Institutsangaben
This work was performed in partnership with the SAS PIVERT within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energetique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investment for the Future (Inves- tissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under reference ANR-001-01.
Weitere Informationen

Publikationsverlauf

Received: 03. Oktober 2017

Accepted after revision: 10. November 2017

Publikationsdatum:
24. Januar 2018 (online)


Abstract

For the first time, a reductive alkylation process in continuous flow has been elaborated for the conversion of bio-based alcohols and aldehydes into symmetrical and dissymmetrical high-value-added ethers for industrial companies. The developed method is an etherification associating liquid, solid and gas phases under green conditions (continuous flow, catalysis, bio-based starting materials).

 
  • References

  • 1 Rudnick LR. Kremer RA. Law DA. US5552071 A, 3. September, 1996
  • 2 Herzog O. Schons-Lueder K. CA2773908 A1, 31. March, 2011
  • 3 Salditt F. US2647100 A, 28. July, 1953
  • 4 Olah GA. EP0750658 A1, 2. January, 1997
  • 5 Yano N. Fukinbara I. Takano M. US4069351 A, 17. January, 1978
  • 6 Golubkov A. WO0118154 A1, 15. March, 2001
  • 7 Bethmont V. Fache F. Lemaire M. Tetrahedron Lett. 1995; 36: 4235
  • 8 Bethmont V. Montassier C. Marecot P. J. Mol. Catal. A: Chem. 2000; 152: 133
  • 9 Williamson AW. J. Chem. Soc. 1852; 229
  • 10 Cox HL. Greer PS. US2050600 A, 11. August, 1936
  • 11 Juršić B. Tetrahedron 1988; 44: 6677
  • 12 Barluenga J. Alonso-Cires L. Campos PJ. Asensio G. Synthesis 1983; 53
  • 13 Harpp DN. Gingras M. J. Am. Chem. Soc. 1988; 110: 7737
  • 14 Gooden PN. Bourne RA. Parrott AJ. Bevinakatti HS. Irvine DJ. Poliakoff M. Org. Process Res. Dev. 2010; 14: 411
  • 15 Gentzen M. Habicht W. Doronkin DE. Grunwaldt J.-D. Sauer J. Behrens S. Catal. Sci. Technol. 2016; 6: 1054
  • 16 Khusnutdinov RI. Shchadneva NA. Mayakova YY. Russ. J. Org. Chem. 2014; 50: 790
  • 17 Rano TA. Chapman KT. Tetrahedron Lett. 1995; 36: 3789
  • 18 Krchňák V. Flegelová Z. Weichsel AS. Lebl M. Tetrahedron Lett. 1995; 36: 6193
  • 19 But TY. S. Toy PH. Chem. Asian J. 2007; 2: 1340
  • 20 Hughes DL. Org. Prep. Proced. Int. 1996; 28: 127
  • 21 Ruppert AM. Parvulescu AN. Arias M. Hausoul PJ. C. Bruijnincx PC. A. Gebbink RJ. M. K. Weckhuysen BM. J. Catal. 2009; 268: 251
  • 22 Brown HC. Kurek JT. Rei M.-H. Thompson KL. J. Org. Chem. 1984; 49: 2551
  • 23 Ready JM. Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 2687
  • 24 Williams DB. Lawton M. Org. Biomol. Chem. 2005; 3: 3269
  • 25 Rodriguez CG. Ferrier RC. Jr. Helenic A. Lynd NA. Macromolecules 2017; 50: 3121
  • 26 Shintou T. Mukaiyama T. J. Am. Chem. Soc. 2004; 126: 7359
  • 27 Sassaman MB. Prakash GK. S. Olah GA. Donald P. Loker KB. Tetrahedron 1988; 44: 3771
  • 28 Carreño MC. Des Mazery R. Urbano A. Colobert F. Solladié G. J. Org. Chem. 2003; 68: 7779
  • 29 Kopecky DJ. Rychnovsky SD. J. Org. Chem. 2000; 65: 191
  • 30 Sakai N. Moriya T. Konakahara T. J. Org. Chem. 2007; 72: 5920
  • 31 Sheldon RA. S. Downing R. Appl. Catal., A 1999; 189: 163
  • 32 Liu Z. Breit B. Angew. Chem. Int. Ed. 2016; 55: 8440
  • 33 Dang Y. Qu S. Wang Z.-X. Wang X. Organometallics 2013; 32: 2804
  • 34 Zhang Z. Widenhoefer RA. Org. Lett. 2008; 10: 2079
  • 35 Corma A. Ruiz VR. Leyva-Pérez A. Sabater MJ. Adv. Synth. Catal. 2010; 352: 1701
  • 36 Zhang C. Sun P. J. Org. Chem. 2014; 79: 8457
  • 37 Zhang S.-Y. He G. Zhao Y. Wright K. Nack WA. Chen G. J. Am. Chem. Soc. 2012; 134: 7313
  • 38 Zhang L.-B. Hao X.-Q. Zhang S.-K. Liu K. Ren B. Gong J.-F. Niu J.-L. Song M.-P. J. Org. Chem. 2014; 79: 10399
  • 39 Hensen K. Mahaim C. Hölderich WF. Appl. Catal., A 1997; 149: 311
  • 40 Radhakrishnan S. Thoelen G. Franken J. Degrève J. Kirschhock CE. A. Martens JA. ChemCatChem 2013; 5: 576
  • 41 Fache F. Bethmont V. Jacquot L. Lemaire M. Recl. Trav. Chim. Pays-Bas 1996; 115: 231
  • 42 Bryan MC. Wernick D. Hein CD. Petersen JV. Eschelbach JW. Doherty EM. Beilstein J. Org. Chem. 2011; 7: 1141
  • 43 Dormán G. Kocsis L. Jones R. Darvas F. J. Chem. Health Saf. 2013; 20: 3
  • 44 Cossar PJ. Hizartzidis L. Simone MI. McCluskey A. Gordon CP. Org. Biomol. Chem. 2015; 13: 7119
  • 45 Introduction à la chimie de flux et présentation de Vapourtec - Vapourtec International https://www.vapourtec.com/fr/ (accessed Nov 30, 2017)
  • 46 ThalesNano Nanotechology Inc - H-Cube Pro http://thalesnano.com/products/h-cube-series/h_cube_pro (accessed Nov 30, 2017)
  • 47 Flow Products - Syrris - Flow chemistry, plugflow, microchemistry, or continuous flow chemistry using continuous reactors http://syrris.com/flow-products (accessed Nov 30, 2017)