Synlett 2018; 29(10): 1297-1302
DOI: 10.1055/s-0036-1591764
letter
© Georg Thieme Verlag Stuttgart · New York

Acylation-Mediated ‘Kinetic Turn-On’ of 3-Amino-1,2,4,5-tetrazines

Stefan Kronister
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria   Email: [email protected]
,
Dennis Svatunek
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria   Email: [email protected]
,
Christoph Denk
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria   Email: [email protected]
,
Hannes Mikula*
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-OC, 1060 Vienna, Austria   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 14 November 2017

Accepted after revision: 29 January 2018

Publication Date:
16 February 2018 (online)


Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop

Abstract

The fast and biocompatible ligation of 1,2,4,5-tetrazines with strained alkenes has found numerous applications in biomedical sciences. The reactivity of a 1,2,4,5-tetrazine can generally be tuned by changing its electronic properties by varying the substituents in the 3- and/or 6-position. An increased reactivity of such bioorthogonal probes upon conjugation or attachment to a target molecule has not previously been described. Such an approach would be beneficial, as it would minimize the impact of residual tetrazine reagents and/or impurities. Herein, we describe such a ‘kinetic turn-on’ of 1,2,4,5-tetrazines upon conjugation. On the basis of the significant increase in reactivity following N-acylation predicted by quantum chemical calculations, we prepared 3-aminotetrazines and their corresponding acetylated derivatives. An investigation of the reaction kinetics indeed revealed a remarkable increase in reactivity upon acylation.

Supporting Information

 
  • References and Notes

  • 1 Sletten EM. Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
  • 2 Prescher JA. Dube DH. Bertozzi CR. Nature 2004; 430: 873
  • 3 Agard NJ. Prescher JA. Bertozzi CR. J. Am. Chem. Soc. 2004; 126: 15046
  • 4 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 5 Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
  • 6 Devaraj NK. Weissleder R. Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
  • 7 McKay CS. Finn MG. Chem. Biol. 2014; 21: 1075
  • 8 Liu DS. Tangpeerachaikul A. Selvaraj R. Taylor MT. Fox JM. Ting AY. J. Am. Chem. Soc. 2012; 134: 792
  • 9 Seitchik JL. Peeler JC. Taylor MT. Blackman ML. Rhoads TW. Cooley RB. Refakis C. Fox JM. Mehl RA. J. Am. Chem. Soc. 2012; 134: 2898
  • 10 Lang K. Davis L. Torres-Kolbus J. Chou C. Deiters A. Chin JW. Nat. Chem. 2012; 4: 298
  • 11 Devaraj NK. Upadhyay R. Haun JB. Hilderbrand SA. Weissleder R. Angew. Chem. Int. Ed. 2009; 48: 7013
  • 12 Yang KS. Budin G. Reiner T. Vinegoni C. Weissleder R. Angew. Chem. Int. Ed. Engl. 2012; 51: 6598
  • 13 Meyer J.-P. Adumeau P. Lewis JS. Zeglis BM. Bioconjugate Chem. 2016; 27: 2791
  • 14 Yang J. Šečkutė J. Cole CM. Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 7476
  • 15 Stairs S. Neves AA. Stöckmann H. Wainman YA. Ireland-Zecchini H. Brindle KM. Leeper FJ. ChemBioChem 2013; 14: 1063
  • 16 Haun JB. Devaraj NK. Hilderbrand SA. Lee H. Weissleder R. Nat. Nanotechnol. 2010; 5: 660
  • 17 Carlson JC. T. Meimetis LG. Hilderbrand SA. Weissleder R. Angew. Chem. Int. Ed. 2013; 52: 6917
  • 18 Meimetis LG. Carlson JC. T. Giedt RJ. Kohler RH. Weissleder R. Angew. Chem. Int. Ed. 2014; 53: 7531
  • 19 Devaraj NK. Hilderbrand S. Upadhyay R. Mazitschek R. Weissleder R. Angew. Chem. Int. Ed. 2010; 49: 2869
  • 20 Wu H. Yang J. Šečkutė J. Devaraj NK. Angew. Chem. Int. Ed. 2014; 53: 5805
  • 21 Yang KS. Budin G. Tassa C. Kister O. Weissleder R. Angew. Chem. Int. Ed. 2013; 52: 10593
  • 22 Hong S. Carlson J. Lee H. Weissleder R. Adv. Healthcare Mater. 2016; 5: 421
  • 23 Zeng D. Zeglis BM. Lewis JS. Anderson CJ. J. Nucl. Med. 2013; 54: 829
  • 24 Reiner T. Zeglis BM. J. Labelled Compd. Radiopharm. 2014; 57: 285
  • 25 Zeglis BM. Sevak KK. Reiner T. Mohindra P. Carlin SD. Zanzonico P. Weissleder R. Lewis JS. J. Nucl. Med. 2013; 54: 1389
  • 26 Rossin R. Robillard MS. Curr. Opin. Chem. Biol. 2014; 21: 161
  • 27 Darko A. Wallace S. Dmitrenko O. Machovina MM. Mehl RA. Chin JW. Fox JM. Chem. Sci. 2014; 5: 3770
  • 28 Pinner A. Ber. Dtsch. Chem. Ges. 1897; 30: 1871
  • 29 Knall A.-C. Slugovc C. Chem. Soc. Rev. 2013; 42: 5131
  • 30 Audebert P. Sadki S. Miomandre F. Clavier G. Vernières MC. Saoud M. Hapiot P. New J. Chem. 2004; 28: 387
  • 31 Yang J. Karver MR. Li W. Sahu S. Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 5222
  • 32 Mayer S. Lang K. Synthesis 2016; 49: 830
  • 33 Coburn MD. Buntain GA. Harris BW. Hiskey MA. Lee K.-Y. Ott DG. J. Heterocycl. Chem. 1991; 28: 2049
  • 34 Chavez DE. Hiskey MA. Dowden B. J. Energ. Mater. 1999; 17: 357
  • 35 Takimoto HH. Denault GC. Tetrahedron Lett. 1966; 7: 5369
  • 36 Liu F. Liang Y. Houk KN. J. Am. Chem. Soc. 2014; 136: 11483
  • 37 Karver MR. Weissleder R. Hilderbrand SA. Bioconjugate Chem. 2011; 22: 2263
  • 38 Lang K. Davis L. Wallace S. Mahesh M. Cox DJ. Blackman ML. Fox JM. Chin JW. J. Am. Chem. Soc. 2012; 134: 10317
  • 39 Boutureira O. Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
  • 40 Bickelhaupt FM. Houk KN. Angew. Chem. Int. Ed. 2017; 56: 10070
  • 41 Nhu D. Duffy S. Avery MV. Baell JB. Bioorg. Med. Chem. Lett. 2010; 20: 4496
  • 42 Cardillo P. Dellavedova M. Gigante L. Lunghi A. Pasturenzi C. Salatelli E. Zanirato P. Eur. J. Org. Chem. 2012; 1195
  • 43 3-Azido-4H-1,2,4-triazole-4-amine (19) A suspension of guanidine hydrochloride (13; 2.2 g, 0.014 mol, 1 equiv) in HCO2H (40 mL) was heated to 100 °C for 16 h. The acid was evaporated and the residue was dissolved in 6 N HCl (30 mL) to give a solution that was refluxed for 2 h. Upon removal of volatiles, the hydrazinotriazolylamine intermediate 16 was obtained as a white crystalline solid and used in the next step (diazotization) without further purification. A solution of NaNO2 (0.97 g, 0.014 mol, 1 equiv) in H2O (4 mL) was added dropwise to a solution of crude 16 in 1 N HCl (20 mL) at 0 °C. The solution was stirred at 0 °C for 30 min, then allowed to warm to r.t. The mixture was neutralized with to pH 9–10 with Na2CO3 and extracted with Et2O in a continuous extractor for 72 h. The solvent was evaporated, and the crude product was purified by column chromatography (silica gel, CH2Cl2–MeOH) to give a beige solid; yield: 610 mg (34%); mp 53–55 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.34 (s, 1 H, CH), 5.97 (br s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 148.3 (s, 1 C), 145.1 (d, 1 C). MS-ESI: m/z [M + H]+ calcd for C2H4N7 +: 126.0; found: 125.4.
  • 44 Takimoto HH. Denault GC. Hotta S. J. Org. Chem. 1965; 30: 711
  • 45 1,2,4,5-Tetrazine-3-amine (8) Amine 19 (600 mg, 4.80 mmol, 1 equiv) was suspended in PhCl (15 mL) and the mixture was refluxed for 18 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, hexanes–EtOAc) to give a red solid; yield: 228 mg (49%); mp 170–172 °C. 1H NMR (400 MHz, CD2Cl2): δ = 9.71 (s, 1 H, CH), 5.74 (br s, 2 H, NH2). 13C NMR (100 MHz, CD2Cl2): δ = 164.8 (s, 1 C), 154.7 (d, 1 C). MS-ESI: m/z [M + H]+ calcd for C2H4N5 +: 98.0; found: 97.6. For the synthesis and characterization of 1,2,4,5-tetrazine-3-amines 2 and 7, see the Supporting Information.
  • 46 N-1,2,4,5-Tetrazin-3-ylacetamide (11) DMAP (7.5 mg, 0.06 mmol, 0.1 equiv), Ac2O (292 µL, 315 mg, 3.09 mmol, 5 equiv), and Et3N (103 µL, 75 mg, 0.74 mmol, 1.2 equiv) were added to a solution of amine 8 (60 mg, 0.62 mmol, 1 equiv) in anhyd CH2Cl2 (4 mL), and the mixture was stirred at r.t. overnight. Purification by column chromatography (silica gel, hexane–EtOAc) gave a red solid; yield: 47 mg (55%); mp 203–205 °C. 1H NMR (400 MHz, acetone-d 6): δ = 10.18 (s, 1 H, CH), 2.82 (s, 3 H, CH3). 13C NMR (100 MHz, acetone-d 6): δ = 168.3 (s, 1 C), 162.1 (s, 1 C), 156.2 (d, 1 C), 24.0 (q, 1 C). MS-ESI: m/z [M + H]+ calcd for C4H6N5O+: 140.0; found: 139.3. For the syntheses and characterization of the N-(1,2,4,5-tetrazin-3-yl)acetamides 9 and 10, see the Supporting Information.
  • 47 Ośmialowski B. Kolehmainen E. Dobosz R. Gawinecki R. Kauppinen R. Valkonen A. Koivukorpi J. Rissanen K. J. Phys. Chem. A 2010; 114: 10421
  • 48 Denk C. Svatunek D. Filip T. Wanek T. Lumpi D. Fröhlich J. Kuntner C. Mikula H. Angew. Chem. Int. Ed. 2014; 53: 9655
  • 49 Denk C. Svatunek D. Mairinger S. Stanek J. Filip T. Matscheko D. Kuntner C. Wanek T. Mikula H. Bioconjugate Chem. 2016; 27: 1707
  • 50 Versteegen RM. Rossin R. ten Hoeve W. Janssen HM. Robillard MS. Angew. Chem. Int. Ed. 2013; 52: 14112
  • 51 Mejia Oneto JM. Khan I. Seebald L. Royzen M. ACS Cent. Sci. 2016; 2: 476